8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HaCaT Keratinocytes and Primary Epidermal Keratinocytes Have Different Transcriptional Profiles of Cornified Envelope-Associated Genes to T Helper Cell Cytokines

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          HaCaT cells are the immortalized human keratinocytes and have been extensively used to study the epidermal homeostasis and its pathophysiology. T helper cells play a role in various chronic dermatological conditions and they can affect skin barrier homeostasis. To evaluate whether HaCaT cells can be used as a model cell system to study abnormal skin barrier development in various dermatologic diseases, we analyzed the gene expression profile of epidermal differentiation markers of HaCaT cells in response to major T helper (Th) cell cytokines, such as IFNγ, IL-4, IL-17A and IL-22. The gene transcriptional profile of cornified envelope-associated proteins, such as filaggrin, loricrin, involucrin and keratin 10 (KRT10), in HaCaT cells was generally different from that in normal human keratinocytes (NHKs). This suggests that HaCaT cells have a limitation as a model system to study the pathophysiological mechanism associated with the Th cell cytokine-dependent changes in cornified envelope-associated proteins which are essential for normal skin barrier development. In contrast, the gene transcription profile change of human β2-defensin (HBD2) in response to IFNγ, IL-4 or IL-17A in HaCaT cells was consistent with the expression pattern of NHKs. IFNγ also up-regulated transglutaminase 2 (TGM2) gene transcription in both HaCaT cells and NHKs. As an alternative cell culture system for NHKs, HaCaT cells can be used to study molecular mechanisms associated with abnormal HBD2 and TGM2 expression in response to IFNγ, IL-4 or IL-17A.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          The biological functions of T helper 17 cell effector cytokines in inflammation.

          T helper 17 (Th17) cells belong to a recently identified T helper subset, in addition to the traditional Th1 and Th2 subsets. These cells are characterized as preferential producers of interleukin-17A (IL-17A), IL-17F, IL-21, and IL-22. Th17 cells and their effector cytokines mediate host defensive mechanisms to various infections, especially extracellular bacteria infections, and are involved in the pathogenesis of many autoimmune diseases. The receptors for IL-17 and IL-22 are broadly expressed on various epithelial tissues. The effector cytokines of Th17 cells, therefore, mediate the crucial crosstalk between immune system and tissues, and play indispensable roles in tissue immunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidermal barrier dysfunction in atopic dermatitis.

            Atopic dermatitis (AD) is a multifactorial, heterogenous disease that arises as a result of the interaction between both environmental and genetic factors. Changes in at least three groups of genes encoding structural proteins, epidermal proteases, and protease inhibitors predispose to a defective epidermal barrier and increase the risk of developing AD. Loss-of-function mutations found within the FLG gene encoding the structural protein, filaggrin, represent the most significant genetic factor predisposing to AD identified to date. Enhanced protease activity and decreased synthesis of the lipid lamellae lead to exacerbated breakdown of the epidermal barrier. Environmental factors, including the use of soap and detergents, exacerbate epidermal barrier breakdown, attributed to the elevation of stratum corneum pH. A sustained increase in pH enhances the activity of degradatory proteases and decreases the activity of the lipid synthesis enzymes. The strong association between both genetic barrier defects and environmental insults to the barrier with AD suggests that epidermal barrier dysfunction is a primary event in the development of this disease. Our understanding of gene-environment interactions should lead to a better use of some topical products, avoidance of others, and the increased use and development of products that can repair the skin barrier.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions.

              Atopic dermatitis (AD) is a multifactorial, chronic inflammatory skin disorder in which genetic mutations and cutaneous hyperreactivity to environmental stimuli play a causative role. Genetic mutations alone might not be enough to cause clinical manifestations of AD, and this review will propose a new perspective on the importance of epidermal barrier dysfunction in genetically predisposed individuals, predisposing them to the harmful effects of environmental agents. The skin barrier is known to be damaged in patients with AD, both in acute eczematous lesions and also in clinically unaffected skin. Skin barrier function can be impaired first by a genetic predisposition to produce increased levels of stratum corneum chymotryptic enzyme. This protease enzyme causes premature breakdown of corneodesmosomes, leading to impairment of the epidermal barrier. The addition of environmental interactions, such as washing with soap and detergents, or long-term application of topical corticosteroids can further increase production of stratum corneum chymotryptic enzyme and impair epidermal barrier function. The epidermal barrier can also be damaged by exogenous proteases from house dust mites and Staphylococcus aureus. One or more of these factors in combination might lead to a defective barrier, thereby increasing the risk of allergen penetration and succeeding inflammatory reaction, thus contributing to exacerbations of this disease.
                Bookmark

                Author and article information

                Contributors
                +82-31-219-3447 , +82-31-899-2595
                Journal
                Biomol Ther (Seoul)
                Biomol Ther (Seoul)
                ksp
                Biomolecules & Therapeutics
                The Korean Society of Applied Pharmacology
                1976-9148
                2005-4483
                March 2012
                : 20
                : 2
                : 171-176
                Affiliations
                [1 ]College of Pharmacy, Ajou University, Suwon 443-749
                [2 ]Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 139-742
                [3 ]College of Pharmacy, Dongguk University, Seoul 100-725
                [4 ]Department of Dermatology, Dongguk University School of Medicine, Goyang 410-773, Republic of Korea
                Author notes
                *Corresponding Author E-mail: minsoo@ 123456ajou.ac.kr Tel: +82-31-219-3447, Fax: +82-31-899-2595
                Article
                ooomb4-20-171
                10.4062/biomolther.2012.20.2.171
                3792214
                24116291
                4670684a-7917-412e-a401-3feb126d2f8c
                Copyright ©2012, The Korean Society of Applied Pharmacology

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 January 2012
                : 04 March 2012
                : 06 March 2012
                Categories
                Articles

                hacat keratinocytes,cornified envelope associated genes,hbd2,ifnγ,il-4,il-17a

                Comments

                Comment on this article