26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tissue-specific regulatory elements in mammalian promoters

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcription factor-binding sites and the cis-regulatory modules they compose are central determinants of gene expression. We previously showed that binding site motifs and modules in proximal promoters can be used to predict a significant portion of mammalian tissue-specific transcription. Here, we report on a systematic analysis of promoters controlling tissue-specific expression in heart, kidney, liver, pancreas, skeletal muscle, testis and CD4 T cells, for both human and mouse. We integrated multiple sources of expression data to compile sets of transcripts with strong evidence for tissue-specific regulation. The analysis of the promoters corresponding to these sets produced a catalog of predicted tissue-specific motifs and modules, and cis-regulatory elements. Predicted regulatory interactions are supported by statistical evidence, and provide a foundation for targeted experiments that will improve our understanding of tissue-specific regulatory networks. In a broader context, methods used to construct the catalog provide a model for the analysis of genomic regions that regulate differentially expressed genes.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          TRANSFAC: transcriptional regulation, from patterns to profiles.

          The TRANSFAC database on eukaryotic transcriptional regulation, comprising data on transcription factors, their target genes and regulatory binding sites, has been extended and further developed, both in number of entries and in the scope and structure of the collected data. Structured fields for expression patterns have been introduced for transcription factors from human and mouse, using the CYTOMER database on anatomical structures and developmental stages. The functionality of Match, a tool for matrix-based search of transcription factor binding sites, has been enhanced. For instance, the program now comes along with a number of tissue-(or state-)specific profiles and new profiles can be created and modified with Match Profiler. The GENE table was extended and gained in importance, containing amongst others links to LocusLink, RefSeq and OMIM now. Further, (direct) links between factor and target gene on one hand and between gene and encoded factor on the other hand were introduced. The TRANSFAC public release is available at http://www.gene-regulation.com. For yeast an additional release including the latest data was made available separately as TRANSFAC Saccharomyces Module (TSM) at http://transfac.gbf.de. For CYTOMER free download versions are available at http://www.biobase.de:8080/index.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            JASPAR: an open-access database for eukaryotic transcription factor binding profiles.

            The analysis of regulatory regions in genome sequences is strongly based on the detection of potential transcription factor binding sites. The preferred models for representation of transcription factor binding specificity have been termed position-specific scoring matrices. JASPAR is an open-access database of annotated, high-quality, matrix-based transcription factor binding site profiles for multicellular eukaryotes. The profiles were derived exclusively from sets of nucleotide sequences experimentally demonstrated to bind transcription factors. The database is complemented by a web interface for browsing, searching and subset selection, an online sequence analysis utility and a suite of programming tools for genome-wide and comparative genomic analysis of regulatory regions. JASPAR is available at http://jaspar. cgb.ki.se.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals.

              Comprehensive identification of all functional elements encoded in the human genome is a fundamental need in biomedical research. Here, we present a comparative analysis of the human, mouse, rat and dog genomes to create a systematic catalogue of common regulatory motifs in promoters and 3' untranslated regions (3' UTRs). The promoter analysis yields 174 candidate motifs, including most previously known transcription-factor binding sites and 105 new motifs. The 3'-UTR analysis yields 106 motifs likely to be involved in post-transcriptional regulation. Nearly one-half are associated with microRNAs (miRNAs), leading to the discovery of many new miRNA genes and their likely target genes. Our results suggest that previous estimates of the number of human miRNA genes were low, and that miRNAs regulate at least 20% of human genes. The overall results provide a systematic view of gene regulation in the human, which will be refined as additional mammalian genomes become available.
                Bookmark

                Author and article information

                Journal
                Mol Syst Biol
                Molecular Systems Biology
                1744-4292
                2007
                16 January 2007
                : 3
                : 73
                Affiliations
                [1 ]Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
                [2 ]Computer Science Department, Portland State University, Portland, OR, USA
                Author notes
                [a ]Cold Spring Harbor Laboratory, 1 Bungtown Road, Hershey Building, Cold Spring Harbor, NY 11724, USA. Tel. +1 516 367 8393; Fax: +1 516 367 8461; mzhang@ 123456cshl.edu
                [*]

                These authors contributed equally to this work

                Article
                msb4100114
                10.1038/msb4100114
                1800356
                17224917
                466cb73d-fa64-44f3-88b8-b35f19d43ecd
                Copyright © 2007, EMBO and Nature Publishing Group
                History
                : 14 June 2006
                : 10 November 2006
                Page count
                Pages: 1
                Categories
                Report

                Quantitative & Systems biology
                tissue-specific regulation,cis-regulatory modules
                Quantitative & Systems biology
                tissue-specific regulation, cis-regulatory modules

                Comments

                Comment on this article