71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Whole-body gene expression pattern registration in Platynereis larvae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Digital anatomical atlases are increasingly used in order to depict different gene expression patterns and neuronal morphologies within a standardized reference template. In evo-devo, a discipline in which the comparison of gene expression patterns is a widely used approach, such standardized anatomical atlases would allow a more rigorous assessment of the conservation of and changes in gene expression patterns during micro- and macroevolutionary time scales. Due to its small size and invariant early development, the annelid Platynereis dumerilii is particularly well suited for such studies. Recently a reference template with registered gene expression patterns has been generated for the anterior part (episphere) of the Platynereis trochophore larva and used for the detailed study of neuronal development.

          Results

          Here we introduce and evaluate a method for whole-body gene expression pattern registration for Platynereis trochophore and nectochaete larvae based on whole-mount in situ hybridization, confocal microscopy, and image registration. We achieved high-resolution whole-body scanning using the mounting medium 2,2’-thiodiethanol (TDE), which allows the matching of the refractive index of the sample to that of glass and immersion oil thereby reducing spherical aberration and improving depth penetration. This approach allowed us to scan entire whole-mount larvae stained with nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP) in situ hybridization and counterstained fluorescently with an acetylated-tubulin antibody and the nuclear stain 4’6-diamidino-2-phenylindole (DAPI). Due to the submicron isotropic voxel size whole-mount larvae could be scanned in any orientation. Based on the whole-body scans, we generated four different reference templates by the iterative registration and averaging of 40 individual image stacks using either the acetylated-tubulin or the nuclear-stain signal for each developmental stage. We then registered to these templates the expression patterns of cell-type specific genes. In order to evaluate the gene expression pattern registration, we analyzed the absolute deviation of cell-center positions. Both the acetylated-tubulin- and the nuclear-stain-based templates allowed near-cellular-resolution gene expression registration. Nuclear-stain-based templates often performed significantly better than acetylated-tubulin-based templates. We provide detailed guidelines and scripts for the use and further expansion of the Platynereis gene expression atlas.

          Conclusions

          We established whole-body reference templates for the generation of gene expression atlases for Platynereis trochophore and nectochaete larvae. We anticipate that nuclear-staining-based image registration will be applicable for whole-body alignment of the embryonic and larval stages of other organisms in a similar size range.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis.

          For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutual-information-based registration of medical images: a survey.

            An overview is presented of the medical image processing literature on mutual-information-based registration. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. Methods are classified according to the different aspects of mutual-information-based registration. The main division is in aspects of the methodology and of the application. The part on methodology describes choices made on facets such as preprocessing of images, gray value interpolation, optimization, adaptations to the mutual information measure, and different types of geometrical transformations. The part on applications is a reference of the literature available on different modalities, on interpatient registration and on different anatomical objects. Comparison studies including mutual information are also considered. The paper starts with a description of entropy and mutual information and it closes with a discussion on past achievements and some future challenges.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new criterion for automatic multilevel thresholding.

              A new criterion for multilevel thresholding is proposed. The criterion is based on the consideration of two factors. The first one is the discrepancy between the thresholded and original images and the second one is the number of bits required to represent the thresholded image. Based on a new maximum correlation criterion for bilevel thresholding, the discrepancy is defined and then a cost function that takes both factors into account is proposed for multilevel thresholding. By minimizing the cost function, the classification number that the gray-levels should be classified and the threshold values can be determined automatically. In addition, the cost function is proven to possess a unique minimum under very mild conditions. Computational analyses indicate that the number of required mathematical operations in the implementation of our algorithm is much less than that of maximum entropy criterion. Finally, simulation results are included to demonstrate their effectiveness.
                Bookmark

                Author and article information

                Journal
                EvoDevo
                Evodevo
                EvoDevo
                BioMed Central
                2041-9139
                2012
                3 December 2012
                : 3
                : 27
                Affiliations
                [1 ]Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen, 72076, Germany
                Article
                2041-9139-3-27
                10.1186/2041-9139-3-27
                3586958
                23199348
                46343a54-abc0-4f98-8045-7c5373d4cdf4
                Copyright ©2012 Asadulina et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 August 2012
                : 23 October 2012
                Categories
                Research

                Developmental biology
                Developmental biology

                Comments

                Comment on this article