Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interaction of Bisphenol A and Its Analogs with Estrogen and Androgen Receptor from Atlantic Cod ( Gadus morhua)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The widespread use of bisphenol A (BPA) in polycarbonate plastics and epoxy resins has made it a prevalent environmental pollutant in aquatic ecosystems. BPA poses a significant threat to marine and freshwater wildlife due to its documented endocrine-disrupting effects on various species. Manufacturers are increasingly turning to other bisphenol compounds as supposedly safer alternatives. In this study, we employed in vitro reporter gene assays and ex vivo precision-cut liver slices from Atlantic cod ( Gadus morhua ) to investigate whether BPA and 11 BPA analogs exhibit estrogenic, antiestrogenic, androgenic, or antiandrogenic effects by influencing estrogen or androgen receptor signaling pathways. Most bisphenols, including BPA, displayed estrogenic properties by activating the Atlantic cod estrogen receptor alpha (gmEra). BPB, BPE, and BPF exhibited efficacy similar to or higher than that of BPA, with BPB and BPAF being more potent agonists. Additionally, some bisphenols, like BPG, induced estrogenic effects in ex vivo liver slices despite not activating gmEra in vitro, suggesting structural modifications by hepatic biotransformation enzymes. While only BPC2 and BPAF activated the Atlantic cod androgen receptor alpha (gmAra), several bisphenols exhibited antiandrogenic effects by inhibiting gmAra activity. This study underscores the endocrine-disrupting impact of bisphenols on aquatic organisms, emphasizing that substitutes for BPA may pose equal or greater risks to both the environment and human health.

          Abstract

          This study substantiates that bisphenols replacing BPA can exhibit similar or greater endocrine disruptive properties and represent the first comprehensive study analyzing the effects of BPs on both the androgen and estrogen receptor in fish.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          The genome sequence of Atlantic cod reveals a unique immune system.

          Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC) II is a conserved feature of the adaptive immune system of jawed vertebrates, but we show that Atlantic cod has lost the genes for MHC II, CD4 and invariant chain (Ii) that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions. We find a highly expanded number of MHC I genes and a unique composition of its Toll-like receptor (TLR) families. This indicates how the Atlantic cod immune system has evolved compensatory mechanisms in both adaptive and innate immunity in the absence of MHC II. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human exposure to bisphenol A (BPA).

            The plastic monomer and plasticizer bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. BPA is used in the production of polycarbonate plastics and epoxy resins used in many consumer products. Here, we have outlined studies that address the levels of BPA in human tissues and fluids. We have reviewed the few epidemiological studies available that explore biological markers of BPA exposure and human health outcomes. We have examined several studies of levels of BPA released from consumer products as well as the levels measured in wastewater, drinking water, air and dust. Lastly, we have reviewed acute metabolic studies and the information available about BPA metabolism in animal models. The reported levels of BPA in human fluids are higher than the BPA concentrations reported to stimulate molecular endpoints in vitro and appear to be within an order of magnitude of the levels needed to induce effects in animal models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts.

              Bisphenol A (BPA), identified as an endocrine disruptor, is an industrially important chemical that is used as a raw material in the manufacture of many products such as engineering plastics (e.g., epoxy resins/polycarbonate plastics), food cans (i.e., lacquer coatings), and dental composites/sealants. The demand and production capacity of BPA in China have grown rapidly. This trend will lead to much more BPA contamination in the environmental media and in the general population in China. This paper reviews the current literature concerning the pollution status of BPA in China (the mainland, Hong Kong, and Taiwan) and its potential impact on human health. Due to potential human health risks from long-term exposure to BPA, body burden of the contaminant should be monitored. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Environ Sci Technol
                Environ Sci Technol
                es
                esthag
                Environmental Science & Technology
                American Chemical Society
                0013-936X
                1520-5851
                01 August 2024
                13 August 2024
                : 58
                : 32
                : 14098-14109
                Affiliations
                [1]Department of Biological Sciences, University of Bergen , Bergen N-5020, Norway
                Author notes
                Author information
                https://orcid.org/0000-0003-4054-9842
                https://orcid.org/0000-0003-0075-6601
                Article
                10.1021/acs.est.4c01500
                11325555
                39087390
                45ec501b-52ef-4bb3-b43c-86c068e532fd
                © 2024 The Authors. Published by American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 18 February 2024
                : 24 July 2024
                : 24 July 2024
                Funding
                Funded by: Norges Forskningsråd, doi 10.13039/501100005416;
                Award ID: 244564
                Funded by: Norges Forskningsråd, doi 10.13039/501100005416;
                Award ID: 248840
                Categories
                Article
                Custom metadata
                es4c01500
                es4c01500

                General environmental science
                reporter gene assays,in vitro,precision-cut liver slices,ex vivo,vitellogenin

                Comments

                Comment on this article