19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulatory T cells require peripheral CCL2-CCR2 signaling to facilitate the resolution of medication overuse headache-related behavioral sensitization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Medication overuse headache (MOH) is the most common secondary headache disorder, resulting from chronic and excessive use of medication to treat headaches, for example, sumatriptan. In a recent study, we have shown that the peripheral C-C motif ligand 2 (CCL2), C-C motif chemokine receptor 2 (CCR2) and calcitonin-gene-related peptide (CGRP) signaling pathways interact with each other and play critical roles in the development of chronic migraine-related behavioral and cellular sensitization. In the present study, we investigated whether CCL2-CCR2 and CGRP signaling pathways play a role in the development of sumatriptan overuse-induced sensitization, and whether they are involved in its resolution by the low-dose interleukin-2 (LD-IL-2) treatment.

          Methods

          Mice received daily sumatriptan administration for 12 days. MOH-related behavioral sensitization was assessed by measuring changes of periorbital mechanical thresholds for 3 weeks. CCL2-CCR2 and CGRP signaling pathways were inhibited by targeted gene deletion or with an anti-CCL2 antibody. Ca 2+-imaging was used to examine whether repetitive sumatriptan treatment enhances CGRP and pituitary adenylate cyclase–activating polypeptide (PACAP) signaling in trigeminal ganglion (TG) neurons. LD-IL-2 treatment was initiated after the establishment of sumatriptan-induced sensitization. Immunohistochemistry and flow cytometry analyses were used to examine whether CCL2-CCR2 signaling controls regulatory T (Treg) cell proliferation and/or trafficking.

          Results

          CCL2, CCR2 and CGRPα global KO mice exhibited robust sumatriptan-induced behavioral sensitization comparable to wild-type controls. Antibody neutralization of peripheral CCL2 did not affect sumatriptan-induced behaviors either. Repeated sumatriptan administration did not enhance the strength of CGRP or PACAP signaling in TG neurons. Nevertheless, LD-IL-2 treatment, which facilitated the resolution of sumatriptan-induced sensitization in wild-type and CGRPα KO mice, was completely ineffective in mice with compromised CCL2-CCR2 signaling. In CCL2 KO mice, we observed normal LD-IL-2-induced Treg expansion in peripheral blood, but the increase of Treg cells in dura and TG tissues was significantly reduced in LD-IL-2-treated CCL2 KO mice relative to wild-type controls.

          Conclusions

          These results indicate that the endogenous CCL2-CCR2 and CGRP signaling pathways are not involved in sumatriptan-induced behavioral sensitization, suggesting that distinct molecular mechanisms underlie chronic migraine and MOH. On the other hand, peripheral CCL2-CCR2 signaling is required for LD-IL-2 to reverse chronic headache-related sensitization.

          Graphical abstract

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative assessment of tactile allodynia in the rat paw

          We applied and validated a quantitative allodynia assessment technique, using a recently developed rat surgical neuropathy model wherein nocifensive behaviors are evoked by light touch to the paw. Employing von Frey hairs from 0.41 to 15.1 g, we first characterized the percent response at each stimulus intensity. A smooth log-linear relationship was observed, with a median 50% threshold at 1.97 g (95% confidence limits, 1.12-3.57 g). Subsequently, we applied a paradigm using stimulus oscillation around the response threshold, which allowed more rapid, efficient measurements. Median 50% threshold by this up-down method was 2.4 g (1.81-2.76). Correlation coefficient between the two methods was 0.91. In neuropathic rats, good intra- and inter-observer reproducibility was found for the up-down paradigm; some variability was seen in normal rats, attributable to extensive testing. Thresholds in a sizable group of neuropathic rats showed insignificant variability over 20 days. After 50 days, 61% still met strict neuropathy criteria, using survival analysis. Threshold measurement using the up-down paradigm, in combination with the neuropathic pain model, represents a powerful tool for analyzing the effects of manipulations of the neuropathic pain state.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease

            The scurfy mutant mouse strain suffers from a fatal lymphoproliferative disease leading to early death within 3–4 wk of age. A frame-shift mutation of the forkhead box transcription factor Foxp3 has been identified as the molecular cause of this multiorgan autoimmune disease. Foxp3 is a central control element in the development and function of regulatory T cells (T reg cells), which are necessary for the maintenance of self-tolerance. However, it is unclear whether dysfunction or a lack of T reg cells is etiologically involved in scurfy pathogenesis and its human correlate, the IPEX syndrome. We describe the generation of bacterial artificial chromosome–transgenic mice termed “depletion of regulatory T cell” (DEREG) mice expressing a diphtheria toxin (DT) receptor–enhanced green fluorescent protein fusion protein under the control of the foxp3 gene locus, allowing selective and efficient depletion of Foxp3+ T reg cells by DT injection. Ablation of Foxp3+ T reg cells in newborn DEREG mice led to the development of scurfy-like symptoms with splenomegaly, lymphadenopathy, insulitis, and severe skin inflammation. Thus, these data provide experimental evidence that the absence of Foxp3+ T reg cells is indeed sufficient to induce a scurfy-like phenotype. Furthermore, DEREG mice will allow a more precise definition of the function of Foxp3+ T reg cells in immune reactions in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Molecular Mechanisms of Treg-Mediated T Cell Suppression

              CD4+CD25highFoxp3+ regulatory T cells (Tregs) can suppress other immune cells and, thus, are critical mediators of peripheral self-tolerance. On the one hand, Tregs avert autoimmune disease and allergies. On the other hand, Tregs can prevent immune reactions against tumors and pathogens. Despite the importance of Tregs, the molecular mechanisms of suppression remain incompletely understood and controversial. Proliferation and cytokine production of CD4+CD25− conventional T cells (Tcons) can be inhibited directly by Tregs. In addition, Tregs can indirectly suppress Tcon activation via inhibition of the stimulatory capacity of antigen presenting cells. Direct suppression of Tcons by Tregs can involve immunosuppressive soluble factors or cell contact. Different mechanisms of suppression have been described, so far with no consensus on one universal mechanism. Controversies might be explained by the fact that different mechanisms may operate depending on the site of the immune reaction, on the type and activation state of the suppressed target cell as well as on the Treg activation status. Further, inhibition of T cell effector function can occur independently of suppression of proliferation. In this review, we summarize the described molecular mechanisms of suppression with a particular focus on suppression of Tcons and rapid suppression of T cell receptor-induced calcium (Ca2+), NFAT, and NF-κB signaling in Tcons by Tregs.
                Bookmark

                Author and article information

                Contributors
                caoy@anest.wustl.edu
                Journal
                J Headache Pain
                J Headache Pain
                The Journal of Headache and Pain
                Springer Milan (Milan )
                1129-2369
                1129-2377
                11 November 2024
                11 November 2024
                2024
                : 25
                : 1
                : 197
                Affiliations
                [1 ]GRID grid.4367.6, ISNI 0000 0001 2355 7002, Department of Anesthesiology, , Washington University in St. Louis School of Medicine, ; St. Louis, MO 63110 USA
                [2 ]GRID grid.4367.6, ISNI 0000 0001 2355 7002, Washington University Pain Center, , Washington University in St. Louis School of Medicine, ; St. Louis, MO 63110 USA
                [3 ]GRID grid.4367.6, ISNI 0000 0001 2355 7002, Department of Medicine, , Washington University in St. Louis School of Medicine, ; St. Louis, MO 63110 USA
                [4 ]GRID grid.4367.6, ISNI 0000 0001 2355 7002, Department of Surgery, , Washington University in St. Louis School of Medicine, ; St. Louis, MO 63110 USA
                Article
                1900
                10.1186/s10194-024-01900-5
                11555869
                45eb1046-b18b-45b5-b1eb-f13f84e16166
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 April 2024
                : 28 October 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: R01NS128080
                Categories
                Research
                Custom metadata
                © Springer-Verlag Italia S.r.l., part of Springer Nature 2024

                Anesthesiology & Pain management
                medication overuse headache,facial mechanical hypersensitivity,c-c motif ligand 2 (ccl2),c-c motif chemokine receptor 2 (ccr2),calcitonin gene-related peptide (cgrp),regulatory t (treg) cell,low-dose interleukin-2 (ld-il-2)

                Comments

                Comment on this article