0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting of Uropathogenic Escherichia coli papG gene using CRISPR-dot nanocomplex reduced virulence of UPEC

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Urinary tract infections (UTI) are the most common infectious diseases in the world. It is becoming increasingly tough to treat because of emergence of antibiotic resistance. So, there is an exigency to develop novel anti-virulence therapeutics to combat multi-drug resistance pathogenic strains. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) discovery has revolutionized the gene editing technology for targeted approach. The greatest obstacle for CRISPR/Cas9 is cargo delivery systems and both viral and plasmid methods have disadvantages. Here, we report a highly efficient novel CRISPR based gene editing strategy, CRISPR-dots for targeting virulence factor Fimbrial Adhesion ( papG gene), the bacterial adhesion molecule. Carbon quantum dots (CQD) were used as a delivery vehicle for Cas9 and gRNA into CFT073, a UPEC strain. CQDs were covalently conjugated to cas9 and papG-targeted guide RNA (gRNA) forming a nanocomplex CRISPR-dots (Cri-dots) as confirmed by DLS and transmission electron microscopy. Cri-dots- papG significantly targeted papG as demonstrated by decrease in the expression of papG.Further papG deficient UPEC had significantly reduced adherence ability and biofilm forming ability as demonstrated by fluorescence microscopy and scanning electron microscopy. Also, papG deficient UPEC had reduced virulence as shown by significantly increased survival of  Caenorhabditis elegans ( C. elegans) worms compared to UPEC. Our findings suggest that targeting of papG gene using Cri-dots nanocomplexes significantly reduced the pathogenicity of UPEC. Thus, Cri-dots nanocomplex offer a novel anti-bacterial strategy against multi-drug resistant UPEC.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis

          For the past twenty five years the NIH family of imaging software, NIH Image and ImageJ have been pioneers as open tools for scientific image analysis. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

            Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by using CRISPR RNAs (crRNAs) to guide the silencing of invading nucleic acids. We show here that in a subset of these systems, the mature crRNA that is base-paired to trans-activating crRNA (tracrRNA) forms a two-RNA structure that directs the CRISPR-associated protein Cas9 to introduce double-stranded (ds) breaks in target DNA. At sites complementary to the crRNA-guide sequence, the Cas9 HNH nuclease domain cleaves the complementary strand, whereas the Cas9 RuvC-like domain cleaves the noncomplementary strand. The dual-tracrRNA:crRNA, when engineered as a single RNA chimera, also directs sequence-specific Cas9 dsDNA cleavage. Our study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RNA-guided human genome engineering via Cas9.

              Bacteria and archaea have evolved adaptive immune defenses, termed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems, that use short RNA to direct degradation of foreign nucleic acids. Here, we engineer the type II bacterial CRISPR system to function with custom guide RNA (gRNA) in human cells. For the endogenous AAVS1 locus, we obtained targeting rates of 10 to 25% in 293T cells, 13 to 8% in K562 cells, and 2 to 4% in induced pluripotent stem cells. We show that this process relies on CRISPR components; is sequence-specific; and, upon simultaneous introduction of multiple gRNAs, can effect multiplex editing of target loci. We also compute a genome-wide resource of ~190 K unique gRNAs targeting ~40.5% of human exons. Our results establish an RNA-guided editing tool for facile, robust, and multiplexable human genome engineering.
                Bookmark

                Author and article information

                Contributors
                manisha.dhanda@gmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                7 September 2021
                7 September 2021
                2021
                : 11
                : 17801
                Affiliations
                [1 ]GRID grid.8195.5, ISNI 0000 0001 2109 4999, Dr. B. R. Ambedkar Center for Biomedical Research, , University of Delhi, ; New Delhi, India
                [2 ]GRID grid.265892.2, ISNI 0000000106344187, Department of Urology, , University of Alabama at Birmingham, ; Hugh Kaul Genetics Building, Birmingham, AL USA
                [3 ]Stem Cell Laboratory, SMiLE Incubator, Scheelevägen 2, Lund, Sweden
                [4 ]GRID grid.505973.d, ISNI 0000 0000 9174 8794, CSIR-Central Scientific Instruments Organisation, ; Sector-30C, Chandigarh, India
                [5 ]GRID grid.4514.4, ISNI 0000 0001 0930 2361, Department of Clinical Sciences, , Lund University, ; Malmö, Sweden
                Article
                97224
                10.1038/s41598-021-97224-4
                8423837
                34493749
                45e34fbd-7077-4c20-91d8-7aa722616976
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 13 May 2021
                : 17 August 2021
                Funding
                Funded by: Faculty Research Programme-IoE Grant
                Award ID: IoE/FRP/LS/2020/27
                Award Recipient :
                Funded by: DST-PURSE
                Funded by: UGC-SAP II
                Funded by: Lund University
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                biotechnology,microbiology,molecular biology
                Uncategorized
                biotechnology, microbiology, molecular biology

                Comments

                Comment on this article