17
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intervention modalities for brain fog caused by long-COVID: systematic review of the literature

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Individuals suffering from long-COVID can present with “brain fog”, which is characterized by a range of cognitive impairments, such as confusion, short-term memory loss, and difficulty concentrating. To date, several potential interventions for brain fog have been considered. Notably, no systematic review has comprehensively discussed the impact of each intervention type on brain fog symptoms. We included studies on adult (aged > 18 years) individuals with proven long- COVID brain-fog symptoms from PubMed, MEDLINE, Central, Scopus, and Embase. A search limit was set for articles published between 01/2020 and 31/12/2023. We excluded studies lacking an objective assessment of brain fog symptoms and patients with preexisting neurological diseases that affected cognition before COVID-19 infection. This review provided relevant information from 17 studies. The rehabilitation studies utilized diverse approaches, leading to a range of outcomes in terms of the effectiveness of the interventions. Six studies described noninvasive brain stimulation, and all showed improvement in cognitive ability. Three studies described hyperbaric oxygen therapy, all of which showed improvements in cognitive assessment tests and brain perfusion. Two studies showed that the use of Palmitoylethanolamide and Luteolin (PEA-LUT) improved cognitive impairment. Noninvasive brain stimulation and hyperbaric oxygen therapy showed promising results in the treatment of brain fog symptoms caused by long-COVID, with improved perfusion and cortical excitability. Furthermore, both rehabilitation strategies and PEA-LUT administration have been associated with improvements in symptoms of brain fog. Future studies should explore combinations of interventions and include longer follow-up periods to assess the long-term effects of these treatments.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The PRISMA 2020 statement: an updated guideline for reporting systematic reviews

          The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, published in 2009, was designed to help systematic reviewers transparently report why the review was done, what the authors did, and what they found. Over the past decade, advances in systematic review methodology and terminology have necessitated an update to the guideline. The PRISMA 2020 statement replaces the 2009 statement and includes new reporting guidance that reflects advances in methods to identify, select, appraise, and synthesise studies. The structure and presentation of the items have been modified to facilitate implementation. In this article, we present the PRISMA 2020 27-item checklist, an expanded checklist that details reporting recommendations for each item, the PRISMA 2020 abstract checklist, and the revised flow diagrams for original and updated reviews.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            More than 50 long-term effects of COVID-19: a systematic review and meta-analysis

            COVID-19 can involve persistence, sequelae, and other medical complications that last weeks to months after initial recovery. This systematic review and meta-analysis aims to identify studies assessing the long-term effects of COVID-19. LitCOVID and Embase were searched to identify articles with original data published before the 1st of January 2021, with a minimum of 100 patients. For effects reported in two or more studies, meta-analyses using a random-effects model were performed using the MetaXL software to estimate the pooled prevalence with 95% CI. PRISMA guidelines were followed. A total of 18,251 publications were identified, of which 15 met the inclusion criteria. The prevalence of 55 long-term effects was estimated, 21 meta-analyses were performed, and 47,910 patients were included (age 17–87 years). The included studies defined long-COVID as ranging from 14 to 110 days post-viral infection. It was estimated that 80% of the infected patients with SARS-CoV-2 developed one or more long-term symptoms. The five most common symptoms were fatigue (58%), headache (44%), attention disorder (27%), hair loss (25%), and dyspnea (24%). Multi-disciplinary teams are crucial to developing preventive measures, rehabilitation techniques, and clinical management strategies with whole-patient perspectives designed to address long COVID-19 care.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.

              In this paper we demonstrate in the intact human the possibility of a non-invasive modulation of motor cortex excitability by the application of weak direct current through the scalp. Excitability changes of up to 40 %, revealed by transcranial magnetic stimulation, were accomplished and lasted for several minutes after the end of current stimulation. Excitation could be achieved selectively by anodal stimulation, and inhibition by cathodal stimulation. By varying the current intensity and duration, the strength and duration of the after-effects could be controlled. The effects were probably induced by modification of membrane polarisation. Functional alterations related to post-tetanic potentiation, short-term potentiation and processes similar to postexcitatory central inhibition are the likely candidates for the excitability changes after the end of stimulation. Transcranial electrical stimulation using weak current may thus be a promising tool to modulate cerebral excitability in a non-invasive, painless, reversible, selective and focal way.
                Bookmark

                Author and article information

                Contributors
                alon323@hotmail.com
                Journal
                Neurol Sci
                Neurol Sci
                Neurological Sciences
                Springer International Publishing (Cham )
                1590-1874
                1590-3478
                2 May 2024
                2 May 2024
                2024
                : 45
                : 7
                : 2951-2968
                Affiliations
                [1 ]Azrieli Faculty of Medicine, Bar-Ilan University, ( https://ror.org/03kgsv495) Safed, Israel
                [2 ]GRID grid.425380.8, Maccabi Healthcare Services, ; Tel Aviv-Yafo, Israel
                Author information
                http://orcid.org/0009-0000-7542-8608
                Article
                7566
                10.1007/s10072-024-07566-w
                11176231
                38695969
                45cebdd9-f93e-45d6-b0c8-86ecf626b49d
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 10 April 2024
                : 27 April 2024
                Funding
                Funded by: Bar-Ilan University
                Categories
                Covid-19
                Custom metadata
                © Fondazione Società Italiana di Neurologia 2024

                Neurosciences
                post-acute sequelae of covid-19,brain fog,intervention,oxygen therapy hyperbaric,non-invasive brain stimulation

                Comments

                Comment on this article