3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tetracyclines: four rings to rule infections through resistance and disease tolerance

      article-commentary
      ,
      The Journal of Clinical Investigation
      American Society for Clinical Investigation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several classes of antibiotics have long been known for protective properties that cannot be explained through their direct antimicrobial effects. However, the molecular bases of these beneficial roles have been elusive. In this issue of the JCI, Mottis et al. report that tetracyclines induced disease tolerance against influenza virus infection, expanding their protection potential beyond resistance and disease tolerance against bacterial infections. The authors dissociated tetracycline’s disease-resistance properties from its disease-tolerance properties by identifying potent tetracycline derivatives with minimal antimicrobial activity but increased capacity to induce an adaptive mitochondrial stress response that initiated disease tolerance mechanisms. These findings have potential clinical applications in viral infections.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          The plant immune system.

          Many plant-associated microbes are pathogens that impair plant growth and reproduction. Plants respond to infection using a two-branched innate immune system. The first branch recognizes and responds to molecules common to many classes of microbes, including non-pathogens. The second responds to pathogen virulence factors, either directly or through their effects on host targets. These plant immune systems, and the pathogen molecules to which they respond, provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms. A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tolerance, danger, and the extended family.

            For many years immunologists have been well served by the viewpoint that the immune system's primary goal is to discriminate between self and non-self. I believe that it is time to change viewpoints and, in this essay, I discuss the possibility that the immune system does not care about self and non-self, that its primary driving force is the need to detect and protect against danger, and that it does not do the job alone, but receives positive and negative communications from an extended network of other bodily tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ATP as a biological hydrotrope.

              Hydrotropes are small molecules that solubilize hydrophobic molecules in aqueous solutions. Typically, hydrotropes are amphiphilic molecules and differ from classical surfactants in that they have low cooperativity of aggregation and work at molar concentrations. Here, we show that adenosine triphosphate (ATP) has properties of a biological hydrotrope. It can both prevent the formation of and dissolve previously formed protein aggregates. This chemical property is manifested at physiological concentrations between 5 and 10 millimolar. Therefore, in addition to being an energy source for biological reactions, for which micromolar concentrations are sufficient, we propose that millimolar concentrations of ATP may act to keep proteins soluble. This may in part explain why ATP is maintained in such high concentrations in cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Clin Invest
                J Clin Invest
                J Clin Invest
                The Journal of Clinical Investigation
                American Society for Clinical Investigation
                0021-9738
                1558-8238
                1 September 2022
                1 September 2022
                1 September 2022
                1 September 2022
                : 132
                : 17
                : e162331
                Affiliations
                Instituto Gulbenkian de Ciência, Oeiras, Portugal.
                Author notes
                Address correspondence to: Luís F. Moita, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal. Phone: 351.918.651.572; Email: lmoita@ 123456igc.gulbenkian.pt .
                Author information
                http://orcid.org/0000-0001-5180-7566
                http://orcid.org/0000-0003-0707-315X
                Article
                162331
                10.1172/JCI162331
                9433098
                36047498
                45c952c1-aae6-467d-a831-619d33a1744a
                © 2022 Jesus et al.

                This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                Categories
                Commentary

                Comments

                Comment on this article