16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of maternal zinc supplementation on the development of autism-associated behavioural and synaptic deficits in offspring Shank3-knockout mice

      research-article
      , , ,
      Molecular Brain
      BioMed Central
      Autism, Zinc, Shank3, Maternal diet, Glutamate, Synapse

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism Spectrum Disorders (ASD) are characterised by deficits in social interactions and repetitive behaviours. Multiple ASD-associated mutations have been identified in the Shank family of proteins that play a critical role in the structure and plasticity of glutamatergic synapses, leading to impaired synapse function and the presentation of ASD-associated behavioural deficits in mice. Shank proteins are highly regulated by zinc, where zinc binds the Shank SAM domain to drive synaptic protein recruitment and synaptic maturation. Here we have examined the influence of maternal dietary zinc supplementation during pregnancy and lactation on the development of ASD-associated behavioural and synaptic changes in the offspring Shank3 knockout ( Shank3 −/− ) mice. Behavioural and electrophysiological experiments were performed in juvenile and adult Shank3 −/− and wildtype littermate control mice born from mothers fed control (30 ppm, ppm) or supplemented (150 ppm) dietary zinc. We observed that the supplemented maternal zinc diet prevented ASD-associated deficits in social interaction and normalised anxiety behaviours in Shank3 −/− offspring mice. These effects were maintained into adulthood. Repetitive grooming was also prevented in adult Shank3 −/− offspring mice. At the synaptic level, maternal zinc supplementation altered postsynaptic NMDA receptor-mediated currents and presynaptic function at glutamatergic synapses onto medium spiny neurons in the cortico-striatal pathway of the Shank3 −/− offspring mice. These data show that increased maternal dietary zinc during pregnancy and lactation can alter the development of ASD-associated changes at the synaptic and the behavioural levels, and that zinc supplementation from the beginning of brain development can prevent ASD-associated deficits in Shank3 −/− mice long term.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: not found
          • Article: not found

          Parallel organization of functionally segregated circuits linking basal ganglia and cortex.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Short-term synaptic plasticity.

            Synaptic transmission is a dynamic process. Postsynaptic responses wax and wane as presynaptic activity evolves. This prominent characteristic of chemical synaptic transmission is a crucial determinant of the response properties of synapses and, in turn, of the stimulus properties selected by neural networks and of the patterns of activity generated by those networks. This review focuses on synaptic changes that result from prior activity in the synapse under study, and is restricted to short-term effects that last for at most a few minutes. Forms of synaptic enhancement, such as facilitation, augmentation, and post-tetanic potentiation, are usually attributed to effects of a residual elevation in presynaptic [Ca(2+)]i, acting on one or more molecular targets that appear to be distinct from the secretory trigger responsible for fast exocytosis and phasic release of transmitter to single action potentials. We discuss the evidence for this hypothesis, and the origins of the different kinetic phases of synaptic enhancement, as well as the interpretation of statistical changes in transmitter release and roles played by other factors such as alterations in presynaptic Ca(2+) influx or postsynaptic levels of [Ca(2+)]i. Synaptic depression dominates enhancement at many synapses. Depression is usually attributed to depletion of some pool of readily releasable vesicles, and various forms of the depletion model are discussed. Depression can also arise from feedback activation of presynaptic receptors and from postsynaptic processes such as receptor desensitization. In addition, glial-neuronal interactions can contribute to short-term synaptic plasticity. Finally, we summarize the recent literature on putative molecular players in synaptic plasticity and the effects of genetic manipulations and other modulatory influences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Shank3 mutant mice display autistic-like behaviours and striatal dysfunction

              Autism spectrum disorders (ASDs) comprise a range of disorders that share a core of neurobehavioural deficits characterized by widespread abnormalities in social interactions, deficits in communication as well as restricted interests and repetitive behaviours. The neurological basis and circuitry mechanisms underlying these abnormal behaviours are poorly understood. Shank3 is a postsynaptic protein, whose disruption at the genetic level is thought to be responsible for development of 22q13 deletion syndrome (Phelan-McDermid Syndrome) and other non-syndromic ASDs. Here we show that mice with Shank3 gene deletions exhibit self-injurious repetitive grooming and deficits in social interaction. Cellular, electrophysiological and biochemical analyses uncovered defects at striatal synapses and cortico-striatal circuits in Shank3 mutant mice. Our findings demonstrate a critical role for Shank3 in the normal development of neuronal connectivity and establish causality between a disruption in the Shank3 gene and the genesis of autistic like-behaviours in mice.
                Bookmark

                Author and article information

                Contributors
                jm.montgomery@auckland.ac.nz
                Journal
                Mol Brain
                Mol Brain
                Molecular Brain
                BioMed Central (London )
                1756-6606
                5 August 2020
                5 August 2020
                2020
                : 13
                : 110
                Affiliations
                GRID grid.9654.e, ISNI 0000 0004 0372 3343, Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, , University of Auckland, ; Private Bag 92019, Auckland, New Zealand
                Author information
                http://orcid.org/0000-0002-8714-7456
                Article
                650
                10.1186/s13041-020-00650-0
                7409418
                32758248
                45a03281-9af8-44ae-9144-3d11e3bc3e73
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 27 April 2020
                : 30 July 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001505, Health Research Council of New Zealand;
                Funded by: FundRef http://dx.doi.org/10.13039/501100001543, Neurological Foundation of New Zealand;
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Neurosciences
                autism,zinc,shank3,maternal diet,glutamate,synapse
                Neurosciences
                autism, zinc, shank3, maternal diet, glutamate, synapse

                Comments

                Comment on this article