7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      3D deeply supervised network for automated segmentation of volumetric medical images.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While deep convolutional neural networks (CNNs) have achieved remarkable success in 2D medical image segmentation, it is still a difficult task for CNNs to segment important organs or structures from 3D medical images owing to several mutually affected challenges, including the complicated anatomical environments in volumetric images, optimization difficulties of 3D networks and inadequacy of training samples. In this paper, we present a novel and efficient 3D fully convolutional network equipped with a 3D deep supervision mechanism to comprehensively address these challenges; we call it 3D DSN. Our proposed 3D DSN is capable of conducting volume-to-volume learning and inference, which can eliminate redundant computations and alleviate the risk of over-fitting on limited training data. More importantly, the 3D deep supervision mechanism can effectively cope with the optimization problem of gradients vanishing or exploding when training a 3D deep model, accelerating the convergence speed and simultaneously improving the discrimination capability. Such a mechanism is developed by deriving an objective function that directly guides the training of both lower and upper layers in the network, so that the adverse effects of unstable gradient changes can be counteracted during the training procedure. We also employ a fully connected conditional random field model as a post-processing step to refine the segmentation results. We have extensively validated the proposed 3D DSN on two typical yet challenging volumetric medical image segmentation tasks: (i) liver segmentation from 3D CT scans and (ii) whole heart and great vessels segmentation from 3D MR images, by participating two grand challenges held in conjunction with MICCAI. We have achieved competitive segmentation results to state-of-the-art approaches in both challenges with a much faster speed, corroborating the effectiveness of our proposed 3D DSN.

          Related collections

          Author and article information

          Journal
          Med Image Anal
          Medical image analysis
          Elsevier BV
          1361-8423
          1361-8415
          May 08 2017
          Affiliations
          [1 ] Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China.
          [2 ] Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China. Electronic address: harry.qin@polyu.edu.hk.
          Article
          S1361-8415(17)30072-5
          10.1016/j.media.2017.05.001
          28526212
          45877aac-af78-4bd8-a2c3-4ffa147d9a1c
          History

          3D deeply supervised networks,3D fully convolutional networks,Deep learning,Volumetric medical image segmentation

          Comments

          Comment on this article