0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      JNK inhibition of VMAT2 contributes to rotenone-induced oxidative stress and dopamine neuron death.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Treatment with rotenone, both in vitro and in vivo, is widely used to model dopamine neuron death in Parkinson's disease upon exposure to environmental neurotoxicants and pesticides. Mechanisms underlying rotenone neurotoxicity are still being defined. Our recent studies suggest that rotenone-induced dopamine neuron death involves microtubule destabilization, which leads to accumulation of cytosolic dopamine and consequently reactive oxygen species (ROS). Furthermore, the c-Jun N-terminal protein kinase (JNK) is required for rotenone-induced dopamine neuron death. Here we report that the neural specific JNK3 isoform of the JNKs, but not JNK1 or JNK2, is responsible for this neuron death in primary cultured dopamine neurons. Treatment with taxol, a microtubule stabilizing agent, attenuates rotenone-induced phosphorylation and presumably activation of JNK. This suggests that JNK is activated by microtubule destabilization upon rotenone exposure. Moreover, rotenone inhibits VMAT2 activity but not VMAT2 protein levels. Significantly, treatment with SP600125, a pharmacological inhibitor of JNKs, attenuates rotenone inhibition of VMAT2. Furthermore, decreased VMAT2 activity following in vitro incubation of recombinant JNK3 protein with purified mesencephalic synaptic vesicles suggests that JNK3 can inhibit VMAT2 activity. Together with our previous findings, these results suggest that rotenone induces dopamine neuron death through a series of sequential events including microtubule destabilization, JNK3 activation, VMAT2 inhibition, accumulation of cytosolic dopamine, and generation of ROS. Our data identify JNK3 as a novel regulator of VMAT2 activity.

          Related collections

          Author and article information

          Journal
          Toxicology
          Toxicology
          1879-3185
          0300-483X
          Feb 3 2015
          : 328
          Affiliations
          [1 ] School of Biological Sciences and Technology, College of Natural Sciences, College of Medicine, Chonnam National University, Gwangju 500-757, South Korea; Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States. Electronic address: choiw@chonnam.ac.kr.
          [2 ] College of Life Sciences, Sejong University, Seoul 143-747, South Korea; Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States. Electronic address: kimhyung@sejong.ac.kr.
          [3 ] Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States. Electronic address: zxia@u.washington.edu.
          Article
          S0300-483X(14)00235-2 NIHMS651279
          10.1016/j.tox.2014.12.005
          4308505
          25496994
          455b5731-37b0-4ec0-8983-b8042c533374
          Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
          History

          Dopamine neuron,JNK,Microtubule,Parkinson’s disease,Rotenone,VMAT2

          Comments

          Comment on this article