5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Generalized Mittag-Leffler Kernel Form Solutions of Free Convection Heat and Mass Transfer Flow of Maxwell Fluid with Newtonian Heating: Prabhakar Fractional Derivative Approach

      , , ,
      Fractal and Fractional
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this article, the effects of Newtonian heating along with wall slip condition on temperature is critically examined on unsteady magnetohydrodynamic (MHD) flows of Prabhakar-like non integer Maxwell fluid near an infinitely vertical plate under constant concentration. For the sake of generalized memory effects, a new mathematical fractional model is formulated based on a newly introduced Prabhakar fractional operator with generalized Fourier’s law and Fick’s law. This fractional model has been solved analytically and exact solutions for dimensionless velocity, concentration, and energy equations are calculated in terms of Mittag-Leffler functions by employing the Laplace transformation method. Physical impacts of different parameters such as α, Pr, β, Sc, Gr, γ, and Gm are studied and demonstrated graphically by Mathcad software. Furthermore, to validate our current results, some limiting models such as classical Maxwell model, classical Newtonian model, and fractional Newtonian model are recovered from Prabhakar fractional Maxwell fluid. Moreover, we compare the results between Maxwell and Newtonian fluids for both fractional and classical cases with and without slip conditions, showing that the movement of the Maxwell fluid is faster than viscous fluid. Additionally, it is visualized that both classical Maxwell and viscous fluid have relatively higher velocity as compared to fractional Maxwell and viscous fluid.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            On the Dynamical Theory of Gases

            J. Maxwell (1867)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan

              Coronaviruses are a large family of viruses that cause different symptoms, from mild cold to severe respiratory distress, and they can be seen in different types of animals such as camels, cattle, cats and bats. Novel coronavirus called COVID-19 is a newly emerged virus that appeared in many countries of the world, but the actual source of the virus is not yet known. The outbreak has caused pandemic with 26,622,706 confirmed infections and 874,708 reported deaths worldwide till August 31, 2020, with 17,717,911 recovered cases. Currently, there exist no vaccines officially approved for the prevention or management of the disease, but alternative drugs meant for HIV, HBV, malaria and some other flus are used to treat this virus. In the present paper, a fractional-order epidemic model with two different operators called the classical Caputo operator and the Atangana–Baleanu–Caputo operator for the transmission of COVID-19 epidemic is proposed and analyzed. The reproduction number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {R}}}_0$$\end{document} R 0 is obtained for the prediction and persistence of the disease. The dynamic behavior of the equilibria is studied by using fractional Routh–Hurwitz stability criterion and fractional La Salle invariant principle. Special attention is given to the global dynamics of the equilibria. Moreover, the fitting of parameters through least squares curve fitting technique is performed, and the average absolute relative error between COVID-19 actual cases and the model’s solution for the infectious class is tried to be reduced and the best fitted values of the relevant parameters are achieved. The numerical solution of the proposed COVID-19 fractional-order model under the Caputo operator is obtained by using generalized Adams–Bashforth–Moulton method, whereas for the Atangana–Baleanu–Caputo operator, we have used a new numerical scheme. Also, the treatment compartment is included in the population which determines the impact of alternative drugs applied for treating the infected individuals. Furthermore, numerical simulations of the model and their graphical presentations are performed to visualize the effectiveness of our theoretical results and to monitor the effect of arbitrary-order derivative.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Fractal and Fractional
                Fractal Fract
                MDPI AG
                2504-3110
                February 2022
                February 10 2022
                : 6
                : 2
                : 98
                Article
                10.3390/fractalfract6020098
                4552d199-97b6-49da-89b0-57fb07bf51cb
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article