9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prehabilitation, making patients fit for surgery – a new frontier in perioperative care

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Optimizing a patients’ condition before surgery to improve the postoperative outcome can be achieved by using prehabilitation; preoperative interventions focusing on modifiable risk factors to improve the physical, nutritional, and mental status of the patient. A multimodal, multidisciplinary approach induces a synergistic effect between the various interventions and affects the outcome postoperatively. While awaiting higher-quality evidence, the worldwide implementation of prehabilitation programs has started, resulting in a true revolution in perioperative care.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017

          Summary Background Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. Methods The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries—Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODEm), to generate cause fractions and cause-specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised. Findings At the broadest grouping of causes of death (Level 1), non-communicable diseases (NCDs) comprised the greatest fraction of deaths, contributing to 73·4% (95% uncertainty interval [UI] 72·5–74·1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional (CMNN) causes accounted for 18·6% (17·9–19·6), and injuries 8·0% (7·7–8·2). Total numbers of deaths from NCD causes increased from 2007 to 2017 by 22·7% (21·5–23·9), representing an additional 7·61 million (7·20–8·01) deaths estimated in 2017 versus 2007. The death rate from NCDs decreased globally by 7·9% (7·0–8·8). The number of deaths for CMNN causes decreased by 22·2% (20·0–24·0) and the death rate by 31·8% (30·1–33·3). Total deaths from injuries increased by 2·3% (0·5–4·0) between 2007 and 2017, and the death rate from injuries decreased by 13·7% (12·2–15·1) to 57·9 deaths (55·9–59·2) per 100 000 in 2017. Deaths from substance use disorders also increased, rising from 284 000 deaths (268 000–289 000) globally in 2007 to 352 000 (334 000–363 000) in 2017. Between 2007 and 2017, total deaths from conflict and terrorism increased by 118·0% (88·8–148·6). A greater reduction in total deaths and death rates was observed for some CMNN causes among children younger than 5 years than for older adults, such as a 36·4% (32·2–40·6) reduction in deaths from lower respiratory infections for children younger than 5 years compared with a 33·6% (31·2–36·1) increase in adults older than 70 years. Globally, the number of deaths was greater for men than for women at most ages in 2017, except at ages older than 85 years. Trends in global YLLs reflect an epidemiological transition, with decreases in total YLLs from enteric infections, respiratory infections and tuberculosis, and maternal and neonatal disorders between 1990 and 2017; these were generally greater in magnitude at the lowest levels of the Socio-demographic Index (SDI). At the same time, there were large increases in YLLs from neoplasms and cardiovascular diseases. YLL rates decreased across the five leading Level 2 causes in all SDI quintiles. The leading causes of YLLs in 1990—neonatal disorders, lower respiratory infections, and diarrhoeal diseases—were ranked second, fourth, and fifth, in 2017. Meanwhile, estimated YLLs increased for ischaemic heart disease (ranked first in 2017) and stroke (ranked third), even though YLL rates decreased. Population growth contributed to increased total deaths across the 20 leading Level 2 causes of mortality between 2007 and 2017. Decreases in the cause-specific mortality rate reduced the effect of population growth for all but three causes: substance use disorders, neurological disorders, and skin and subcutaneous diseases. Interpretation Improvements in global health have been unevenly distributed among populations. Deaths due to injuries, substance use disorders, armed conflict and terrorism, neoplasms, and cardiovascular disease are expanding threats to global health. For causes of death such as lower respiratory and enteric infections, more rapid progress occurred for children than for the oldest adults, and there is continuing disparity in mortality rates by sex across age groups. Reductions in the death rate of some common diseases are themselves slowing or have ceased, primarily for NCDs, and the death rate for selected causes has increased in the past decade. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories

            Summary Background Understanding potential trajectories in health and drivers of health is crucial to guiding long-term investments and policy implementation. Past work on forecasting has provided an incomplete landscape of future health scenarios, highlighting a need for a more robust modelling platform from which policy options and potential health trajectories can be assessed. This study provides a novel approach to modelling life expectancy, all-cause mortality and cause of death forecasts —and alternative future scenarios—for 250 causes of death from 2016 to 2040 in 195 countries and territories. Methods We modelled 250 causes and cause groups organised by the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) hierarchical cause structure, using GBD 2016 estimates from 1990–2016, to generate predictions for 2017–40. Our modelling framework used data from the GBD 2016 study to systematically account for the relationships between risk factors and health outcomes for 79 independent drivers of health. We developed a three-component model of cause-specific mortality: a component due to changes in risk factors and select interventions; the underlying mortality rate for each cause that is a function of income per capita, educational attainment, and total fertility rate under 25 years and time; and an autoregressive integrated moving average model for unexplained changes correlated with time. We assessed the performance by fitting models with data from 1990–2006 and using these to forecast for 2007–16. Our final model used for generating forecasts and alternative scenarios was fitted to data from 1990–2016. We used this model for 195 countries and territories to generate a reference scenario or forecast through 2040 for each measure by location. Additionally, we generated better health and worse health scenarios based on the 85th and 15th percentiles, respectively, of annualised rates of change across location-years for all the GBD risk factors, income per person, educational attainment, select intervention coverage, and total fertility rate under 25 years in the past. We used the model to generate all-cause age-sex specific mortality, life expectancy, and years of life lost (YLLs) for 250 causes. Scenarios for fertility were also generated and used in a cohort component model to generate population scenarios. For each reference forecast, better health, and worse health scenarios, we generated estimates of mortality and YLLs attributable to each risk factor in the future. Findings Globally, most independent drivers of health were forecast to improve by 2040, but 36 were forecast to worsen. As shown by the better health scenarios, greater progress might be possible, yet for some drivers such as high body-mass index (BMI), their toll will rise in the absence of intervention. We forecasted global life expectancy to increase by 4·4 years (95% UI 2·2 to 6·4) for men and 4·4 years (2·1 to 6·4) for women by 2040, but based on better and worse health scenarios, trajectories could range from a gain of 7·8 years (5·9 to 9·8) to a non-significant loss of 0·4 years (–2·8 to 2·2) for men, and an increase of 7·2 years (5·3 to 9·1) to essentially no change (0·1 years [–2·7 to 2·5]) for women. In 2040, Japan, Singapore, Spain, and Switzerland had a forecasted life expectancy exceeding 85 years for both sexes, and 59 countries including China were projected to surpass a life expectancy of 80 years by 2040. At the same time, Central African Republic, Lesotho, Somalia, and Zimbabwe had projected life expectancies below 65 years in 2040, indicating global disparities in survival are likely to persist if current trends hold. Forecasted YLLs showed a rising toll from several non-communicable diseases (NCDs), partly driven by population growth and ageing. Differences between the reference forecast and alternative scenarios were most striking for HIV/AIDS, for which a potential increase of 120·2% (95% UI 67·2–190·3) in YLLs (nearly 118 million) was projected globally from 2016–40 under the worse health scenario. Compared with 2016, NCDs were forecast to account for a greater proportion of YLLs in all GBD regions by 2040 (67·3% of YLLs [95% UI 61·9–72·3] globally); nonetheless, in many lower-income countries, communicable, maternal, neonatal, and nutritional (CMNN) diseases still accounted for a large share of YLLs in 2040 (eg, 53·5% of YLLs [95% UI 48·3–58·5] in Sub-Saharan Africa). There were large gaps for many health risks between the reference forecast and better health scenario for attributable YLLs. In most countries, metabolic risks amenable to health care (eg, high blood pressure and high plasma fasting glucose) and risks best targeted by population-level or intersectoral interventions (eg, tobacco, high BMI, and ambient particulate matter pollution) had some of the largest differences between reference and better health scenarios. The main exception was sub-Saharan Africa, where many risks associated with poverty and lower levels of development (eg, unsafe water and sanitation, household air pollution, and child malnutrition) were projected to still account for substantive disparities between reference and better health scenarios in 2040. Interpretation With the present study, we provide a robust, flexible forecasting platform from which reference forecasts and alternative health scenarios can be explored in relation to a wide range of independent drivers of health. Our reference forecast points to overall improvements through 2040 in most countries, yet the range found across better and worse health scenarios renders a precarious vision of the future—a world with accelerating progress from technical innovation but with the potential for worsening health outcomes in the absence of deliberate policy action. For some causes of YLLs, large differences between the reference forecast and alternative scenarios reflect the opportunity to accelerate gains if countries move their trajectories toward better health scenarios—or alarming challenges if countries fall behind their reference forecasts. Generally, decision makers should plan for the likely continued shift toward NCDs and target resources toward the modifiable risks that drive substantial premature mortality. If such modifiable risks are prioritised today, there is opportunity to reduce avoidable mortality in the future. However, CMNN causes and related risks will remain the predominant health priority among lower-income countries. Based on our 2040 worse health scenario, there is a real risk of HIV mortality rebounding if countries lose momentum against the HIV epidemic, jeopardising decades of progress against the disease. Continued technical innovation and increased health spending, including development assistance for health targeted to the world's poorest people, are likely to remain vital components to charting a future where all populations can live full, healthy lives. Funding Bill & Melinda Gates Foundation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Guidelines for Perioperative Care in Elective Colorectal Surgery: Enhanced Recovery After Surgery (ERAS®) Society Recommendations: 2018

              This is the fourth updated Enhanced Recovery After Surgery (ERAS®) Society guideline presenting a consensus for optimal perioperative care in colorectal surgery and providing graded recommendations for each ERAS item within the ERAS® protocol.
                Bookmark

                Author and article information

                Contributors
                Journal
                Innov Surg Sci
                Innov Surg Sci
                iss
                iss
                iss
                Innovative Surgical Sciences
                De Gruyter
                2364-7485
                24 December 2019
                December 2019
                : 4
                : 4
                : 132-138
                Affiliations
                deptDepartment of Surgical Oncology , universityMáxima MC , Veldhoven, the Netherlands
                deptDepartment of Medical Oncology , universityMáxima MC , Veldhoven, the Netherlands
                deptDepartment of Surgery , universityUniversity Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg , Heidelberg, Germany
                deptDepartment of Surgical Oncology , universityMáxima MC , 5500MB, Veldhoven, the Netherlands, E-mail: prehab.resurge@ 123456mmc.nl
                Article
                iss-2019-0017
                10.1515/iss-2019-0017
                8059351
                33977122
                44d2745e-78ef-427f-ad5b-0b25afbdc2e2
                ©2019 Molenaar C.J.L., et al., published by De Gruyter, Berlin/Boston

                This work is licensed under the Creative Commons Attribution 4.0 Public License.

                History
                : 09 December 2019
                : 09 December 2019
                Page count
                Pages: 8
                Categories
                Review

                functional capacity,multimodal,perioperative care,prehabilitation,surgical complications

                Comments

                Comment on this article