47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome wide CNV analysis reveals additional variants associated with milk production traits in Holsteins

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Milk production is an economically important sector of global agriculture. Much attention has been paid to the identification of quantitative trait loci (QTL) associated with milk, fat, and protein yield and the genetic and molecular mechanisms underlying them. Copy number variation (CNV) is an emerging class of variants which may be associated with complex traits.

          Results

          In this study, we performed a genome-wide association between CNVs and milk production traits in 26,362 Holstein bulls and cows. A total of 99 candidate CNVs were identified using Illumina BovineSNP50 array data, and association tests for each production trait were performed using a linear regression analysis with PCA correlation. A total of 34 CNVs on 22 chromosomes were significantly associated with at least one milk production trait after false discovery rate (FDR) correction. Some of those CNVs were located within or near known QTL for milk production traits. We further investigated the relationship between associated CNVs with neighboring SNPs. For all 82 combinations of traits and CNVs (less than 400 kb in length), we found 17 cases where CNVs directly overlapped with tag SNPs and 40 cases where CNVs were adjacent to tag SNPs. In 5 cases, CNVs located were in strong linkage disequilibrium with tag SNPs, either within or adjacent to the same haplotype block. There were an additional 20 cases where CNVs did not have a significant association with SNPs, suggesting that the effects of those CNVs were probably not captured by tag SNPs.

          Conclusion

          We conclude that combining CNV with SNP analyses reveals more genetic variations underlying milk production traits than those revealed by SNPs alone.

          Electronic supplementary material

          The online version of this article (doi:10.1186/1471-2164-15-683) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition.

          We recently mapped a quantitative trait locus (QTL) with a major effect on milk composition--particularly fat content--to the centromeric end of bovine chromosome 14. We subsequently exploited linkage disequilibrium to refine the map position of this QTL to a 3-cM chromosome interval bounded by microsatellite markers BULGE13 and BULGE09. We herein report the positional candidate cloning of this QTL, involving (1) the construction of a BAC contig spanning the corresponding marker interval, (2) the demonstration that a very strong candidate gene, acylCoA:diacylglycerol acyltransferase (DGAT1), maps to that contig, and (3) the identification of a nonconservative K232A substitution in the DGAT1 gene with a major effect on milk fat content and other milk characteristics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era

            The Animal QTL database (QTLdb; http://www.animalgenome.org/QTLdb) is designed to house all publicly available QTL and single-nucleotide polymorphism/gene association data on livestock animal species. An earlier version was published in the Nucleic Acids Research Database issue in 2007. Since then, we have continued our efforts to develop new and improved database tools to allow more data types, parameters and functions. Our efforts have transformed the Animal QTLdb into a tool that actively serves the research community as a quality data repository and more importantly, a provider of easily accessible tools and functions to disseminate QTL and gene association information. The QTLdb has been heavily used by the livestock genomics community since its first public release in 2004. To date, there are 5920 cattle, 3442 chicken, 7451 pigs, 753 sheep and 88 rainbow trout data points in the database, and at least 290 publications that cite use of the database. The rapid advancement in genomic studies of cattle, chicken, pigs, sheep and other livestock animals has presented us with challenges, as well as opportunities for the QTLdb to meet the evolving needs of the research community. Here, we report our progress over the recent years and highlight new functions and services available to the general public.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows

              Background Genome-wide association analysis is a powerful tool for annotating phenotypic effects on the genome and knowledge of genes and chromosomal regions associated with dairy phenotypes is useful for genome and gene-based selection. Here, we report results of a genome-wide analysis of predicted transmitting ability (PTA) of 31 production, health, reproduction and body conformation traits in contemporary Holstein cows. Results Genome-wide association analysis identified a number of candidate genes and chromosome regions associated with 31 dairy traits in contemporary U.S. Holstein cows. Highly significant genes and chromosome regions include: BTA13's GNAS region for milk, fat and protein yields; BTA7's INSR region and BTAX's LOC520057 and GRIA3 for daughter pregnancy rate, somatic cell score and productive life; BTA2's LRP1B for somatic cell score; BTA14's DGAT1-NIBP region for fat percentage; BTA1's FKBP2 for protein yields and percentage, BTA26's MGMT and BTA6's PDGFRA for protein percentage; BTA18's 53.9-58.7 Mb region for service-sire and daughter calving ease and service-sire stillbirth; BTA18's PGLYRP1-IGFL1 region for a large number of traits; BTA18's LOC787057 for service-sire stillbirth and daughter calving ease; BTA15's CD82, BTA23's DST and the MOCS1-LRFN2 region for daughter stillbirth; and BTAX's LOC520057 and GRIA3 for daughter pregnancy rate. For body conformation traits, BTA11, BTAX, BTA10, BTA5, and BTA26 had the largest concentrations of SNP effects, and PHKA2 of BTAX and REN of BTA16 had the most significant effects for body size traits. For body shape traits, BTAX, BTA19 and BTA3 were most significant. Udder traits were affected by BTA16, BTA22, BTAX, BTA2, BTA10, BTA11, BTA20, BTA22 and BTA25, teat traits were affected by BTA6, BTA7, BTA9, BTA16, BTA11, BTA26 and BTA17, and feet/legs traits were affected by BTA11, BTA13, BTA18, BTA20, and BTA26. Conclusions Genome-wide association analysis identified a number of genes and chromosome regions associated with 31 production, health, reproduction and body conformation traits in contemporary Holstein cows. The results provide useful information for annotating phenotypic effects on the dairy genome and for building consensus of dairy QTL effects.
                Bookmark

                Author and article information

                Contributors
                xulingyang2008@gmail.com
                John.Cole@ars.usda.gov
                Derek.Bickhart@ars.usda.gov
                houyali1210@gmail.com
                songj88@umd.edu
                Paul.Vanraden@ars.usda.gov
                Tad.Sonstegard@ars.usda.gov
                Curt.Vantassell@ars.usda.gov
                George.Liu@ars.usda.gov
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                15 August 2014
                15 August 2014
                2014
                : 15
                : 1
                : 683
                Affiliations
                [ ]Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, Maryland 20705 USA
                [ ]Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742 USA
                [ ]Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029 China
                Article
                6385
                10.1186/1471-2164-15-683
                4152564
                25128478
                44b4412a-a0d5-4984-a70b-061d28ca95a6
                © Xu et al.; licensee BioMed Central Ltd. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 24 March 2014
                : 31 July 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Genetics
                copy number variation (cnv),dpta,association,milk production traits
                Genetics
                copy number variation (cnv), dpta, association, milk production traits

                Comments

                Comment on this article