8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical and chest computed tomography features of patients suffering from mild and severe COVID-19 at Fayoum University Hospital in Egypt

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In pandemic COVID-19 (coronavirus disease 2019), the prognosis of patients has been determined using clinical data and CT (computed tomography) scans, but it is still unclear whether chest CT characteristics are correlated to COVID-19 severity.

          Aim

          To explore the potential association between clinical data and 25-point CT score and investigate their predictive significance in COVID-19-positive patients at Fayoum University Hospital in Egypt.

          Methods

          This study was conducted on 252 Egyptian COVID-19 patients at Fayoum University Hospital in Egypt. The patients were classified into two groups: a mild group (174 patients) and a severe group (78 patients). The results of clinical laboratory data, and CT scans of severe and mild patients, were collected, analyzed, and compared.

          Results

          The severe group show high significance levels of CRP, alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, urea, ferritin, lactate dehydrogenase (LDH), neutrophil percent, and heart rate (HR) than the mild group. Lymphopenia, hypoalbuminemia, hypocalcemia, and decreased oxygen saturation (SpO2) were the most observed abnormalities in severe COVID-19 patients. Lymphopenia, low SpO2 and albumin levels, elevated serum LDH, ferritin, urea, and CRP levels were found to be significantly correlated with severity CT score ( P<0.0001).

          Conclusion

          The clinical severity of COVID-19 and the CT score are highly correlated. Our findings indicate that the CT scoring system can help to predict COVID-19 disease outcomes and has a strong correlation with clinical laboratory testing.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

          Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathological findings of COVID-19 associated with acute respiratory distress syndrome

            Since late December, 2019, an outbreak of a novel coronavirus disease (COVID-19; previously known as 2019-nCoV)1, 2 was reported in Wuhan, China, 2 which has subsequently affected 26 countries worldwide. In general, COVID-19 is an acute resolved disease but it can also be deadly, with a 2% case fatality rate. Severe disease onset might result in death due to massive alveolar damage and progressive respiratory failure.2, 3 As of Feb 15, about 66 580 cases have been confirmed and over 1524 deaths. However, no pathology has been reported due to barely accessible autopsy or biopsy.2, 3 Here, we investigated the pathological characteristics of a patient who died from severe infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by postmortem biopsies. This study is in accordance with regulations issued by the National Health Commission of China and the Helsinki Declaration. Our findings will facilitate understanding of the pathogenesis of COVID-19 and improve clinical strategies against the disease. A 50-year-old man was admitted to a fever clinic on Jan 21, 2020, with symptoms of fever, chills, cough, fatigue and shortness of breath. He reported a travel history to Wuhan Jan 8–12, and that he had initial symptoms of mild chills and dry cough on Jan 14 (day 1 of illness) but did not see a doctor and kept working until Jan 21 (figure 1 ). Chest x-ray showed multiple patchy shadows in both lungs (appendix p 2), and a throat swab sample was taken. On Jan 22 (day 9 of illness), the Beijing Centers for Disease Control (CDC) confirmed by reverse real-time PCR assay that the patient had COVID-19. Figure 1 Timeline of disease course according to days from initial presentation of illness and days from hospital admission, from Jan 8–27, 2020 SARS-CoV-2=severe acute respiratory syndrome coronavirus 2. He was immediately admitted to the isolation ward and received supplemental oxygen through a face mask. He was given interferon alfa-2b (5 million units twice daily, atomisation inhalation) and lopinavir plus ritonavir (500 mg twice daily, orally) as antiviral therapy, and moxifloxacin (0·4 g once daily, intravenously) to prevent secondary infection. Given the serious shortness of breath and hypoxaemia, methylprednisolone (80 mg twice daily, intravenously) was administered to attenuate lung inflammation. Laboratory tests results are listed in the appendix (p 4). After receiving medication, his body temperature reduced from 39·0 to 36·4 °C. However, his cough, dyspnoea, and fatigue did not improve. On day 12 of illness, after initial presentation, chest x-ray showed progressive infiltrate and diffuse gridding shadow in both lungs. He refused ventilator support in the intensive care unit repeatedly because he suffered from claustrophobia; therefore, he received high-flow nasal cannula (HFNC) oxygen therapy (60% concentration, flow rate 40 L/min). On day 13 of illness, the patient's symptoms had still not improved, but oxygen saturation remained above 95%. In the afternoon of day 14 of illness, his hypoxaemia and shortness of breath worsened. Despite receiving HFNC oxygen therapy (100% concentration, flow rate 40 L/min), oxygen saturation values decreased to 60%, and the patient had sudden cardiac arrest. He was immediately given invasive ventilation, chest compression, and adrenaline injection. Unfortunately, the rescue was not successful, and he died at 18:31 (Beijing time). Biopsy samples were taken from lung, liver, and heart tissue of the patient. Histological examination showed bilateral diffuse alveolar damage with cellular fibromyxoid exudates (figure 2A, B ). The right lung showed evident desquamation of pneumocytes and hyaline membrane formation, indicating acute respiratory distress syndrome (ARDS; figure 2A). The left lung tissue displayed pulmonary oedema with hyaline membrane formation, suggestive of early-phase ARDS (figure 2B). Interstitial mononuclear inflammatory infiltrates, dominated by lymphocytes, were seen in both lungs. Multinucleated syncytial cells with atypical enlarged pneumocytes characterised by large nuclei, amphophilic granular cytoplasm, and prominent nucleoli were identified in the intra-alveolar spaces, showing viral cytopathic-like changes. No obvious intranuclear or intracytoplasmic viral inclusions were identified. Figure 2 Pathological manifestations of right (A) and left (B) lung tissue, liver tissue (C), and heart tissue (D) in a patient with severe pneumonia caused by SARS-CoV-2 SARS-CoV-2=severe acute respiratory syndrome coronavirus 2. The pathological features of COVID-19 greatly resemble those seen in SARS and Middle Eastern respiratory syndrome (MERS) coronavirus infection.4, 5 In addition, the liver biopsy specimens of the patient with COVID-19 showed moderate microvesicular steatosis and mild lobular and portal activity (figure 2C), indicating the injury could have been caused by either SARS-CoV-2 infection or drug-induced liver injury. There were a few interstitial mononuclear inflammatory infiltrates, but no other substantial damage in the heart tissue (figure 2D). Peripheral blood was prepared for flow cytometric analysis. We found that the counts of peripheral CD4 and CD8 T cells were substantially reduced, while their status was hyperactivated, as evidenced by the high proportions of HLA-DR (CD4 3·47%) and CD38 (CD8 39·4%) double-positive fractions (appendix p 3). Moreover, there was an increased concentration of highly proinflammatory CCR6+ Th17 in CD4 T cells (appendix p 3). Additionally, CD8 T cells were found to harbour high concentrations of cytotoxic granules, in which 31·6% cells were perforin positive, 64·2% cells were granulysin positive, and 30·5% cells were granulysin and perforin double-positive (appendix p 3). Our results imply that overactivation of T cells, manifested by increase of Th17 and high cytotoxicity of CD8 T cells, accounts for, in part, the severe immune injury in this patient. X-ray images showed rapid progression of pneumonia and some differences between the left and right lung. In addition, the liver tissue showed moderate microvesicular steatosis and mild lobular activity, but there was no conclusive evidence to support SARS-CoV-2 infection or drug-induced liver injury as the cause. There were no obvious histological changes seen in heart tissue, suggesting that SARS-CoV-2 infection might not directly impair the heart. Although corticosteroid treatment is not routinely recommended to be used for SARS-CoV-2 pneumonia, 1 according to our pathological findings of pulmonary oedema and hyaline membrane formation, timely and appropriate use of corticosteroids together with ventilator support should be considered for the severe patients to prevent ARDS development. Lymphopenia is a common feature in the patients with COVID-19 and might be a critical factor associated with disease severity and mortality. 3 Our clinical and pathological findings in this severe case of COVID-19 can not only help to identify a cause of death, but also provide new insights into the pathogenesis of SARS-CoV-2-related pneumonia, which might help physicians to formulate a timely therapeutic strategy for similar severe patients and reduce mortality. This online publication has been corrected. The corrected version first appeared at thelancet.com/respiratory on February 25, 2020
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China

              Coronavirus disease 2019 (COVID-19) is an emerging infectious disease that was first reported in Wuhan, China, and has subsequently spread worldwide. Risk factors for the clinical outcomes of COVID-19 pneumonia have not yet been well delineated.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: MethodologyRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: MethodologyRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: MethodologyRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: ValidationRole: Visualization
                Role: ConceptualizationRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: ValidationRole: Visualization
                Role: ConceptualizationRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: ValidationRole: Visualization
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: MethodologyRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS One
                plos
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                8 July 2022
                2022
                8 July 2022
                : 17
                : 7
                : e0271271
                Affiliations
                [1 ] Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
                [2 ] Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
                [3 ] Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, Egypt
                [4 ] Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
                [5 ] Department of Radiology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
                [6 ] Department of Clinical and Chemical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
                [7 ] Department of Chest Diseases, Faculty of Medicine, Fayoum University, Fayoum, Egypt
                [8 ] Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
                Sam Higginbottom University of Agriculture, Technology and Sciences, INDIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0002-0136-7096
                Article
                PONE-D-21-28645
                10.1371/journal.pone.0271271
                9269943
                35802733
                4496add9-26c8-4417-b906-978db5f6cc0f
                © 2022 Ismail et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 September 2021
                : 28 June 2022
                Page count
                Figures: 3, Tables: 3, Pages: 13
                Funding
                The author(s) received no specific funding for this work.
                Categories
                Research Article
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Viral Diseases
                Covid 19
                Research and Analysis Methods
                Imaging Techniques
                Neuroimaging
                Computed Axial Tomography
                Biology and Life Sciences
                Neuroscience
                Neuroimaging
                Computed Axial Tomography
                Medicine and Health Sciences
                Diagnostic Medicine
                Diagnostic Radiology
                Tomography
                Computed Axial Tomography
                Research and Analysis Methods
                Imaging Techniques
                Diagnostic Radiology
                Tomography
                Computed Axial Tomography
                Medicine and Health Sciences
                Radiology and Imaging
                Diagnostic Radiology
                Tomography
                Computed Axial Tomography
                Medicine and Health Sciences
                Diagnostic Medicine
                Clinical Laboratory Sciences
                Clinical Laboratories
                Biology and Life Sciences
                Biochemistry
                Proteins
                Protein Complexes
                Ferritin
                Medicine and Health Sciences
                Clinical Medicine
                Signs and Symptoms
                Fevers
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Counts
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Counts
                Biology and Life Sciences
                Physiology
                Body Fluids
                Blood
                Blood Counts
                People and Places
                Geographical Locations
                Asia
                Egypt
                People and Places
                Geographical Locations
                Africa
                Egypt
                Physical Sciences
                Chemistry
                Chemical Compounds
                Organic Compounds
                Urea
                Physical Sciences
                Chemistry
                Organic Chemistry
                Organic Compounds
                Urea
                Custom metadata
                Data underlying the study cannot be made publicly available due to ethical restrictions imposed by the ethical committee of Fayoum University Hospital. Data would be available upon request to researchers who meet the criteria for access to confidential data. Data requests may be sent to Professor Ahmed Fathy Elkhateeb, Vice Manager of Fayoum University Hospitals, Critical Care Medicine Department, at the email address: Afm02@ 123456fayoum.edu.eg .
                COVID-19

                Uncategorized
                Uncategorized

                Comments

                Comment on this article