8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sleep deprivation, vigilant attention, and brain function: a review

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vigilant attention is a major component of a wide range of cognitive performance tasks. Vigilant attention is impaired by sleep deprivation and restored after rest breaks and (more enduringly) after sleep. The temporal dynamics of vigilant attention deficits across hours and days are driven by physiologic, sleep regulatory processes—a sleep homeostatic process and a circadian process. There is also evidence of a slower, allostatic process, which modulates the sleep homeostatic setpoint across days and weeks and is responsible for cumulative deficits in vigilant attention across consecutive days of sleep restriction. There are large inter-individual differences in vulnerability to sleep loss, and these inter-individual differences constitute a pronounced human phenotype. However, this phenotype is multi-dimensional; vulnerability in terms of vigilant attention impairment can be dissociated from vulnerability in terms of other cognitive processes such as attentional control. The vigilance decrement, or time-on-task effect—a decline in performance across the duration of a vigilant attention task—is characterized by progressively increasing response variability, which is exacerbated by sleep loss. This variability, while crucial to understanding the impact of sleep deprivation on performance in safety-critical tasks, is not well explained by top-down regulatory mechanisms, such as the homeostatic and circadian processes. A bottom-up, neuronal pathway-dependent mechanism involving use-dependent, local sleep may be the main driver of response variability. This bottom-up mechanism may also explain the dissociation between cognitive processes with regard to trait vulnerability to sleep loss.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: not found
          • Article: not found

          Quantification of sleepiness: a new approach.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Rare and common variants: twenty arguments.

            Genome-wide association studies have greatly improved our understanding of the genetic basis of disease risk. The fact that they tend not to identify more than a fraction of the specific causal loci has led to divergence of opinion over whether most of the variance is hidden as numerous rare variants of large effect or as common variants of very small effect. Here I review 20 arguments for and against each of these models of the genetic basis of complex traits and conclude that both classes of effect can be readily reconciled.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night.

              To determine whether a cumulative sleep debt (in a range commonly experienced) would result in cumulative changes in measures of waking neurobehavioral alertness, 16 healthy young adults had their sleep restricted 33% below habitual sleep duration, to an average 4.98 hours per night [standard deviation (SD) = 0.57] for seven consecutive nights. Subjects slept in the laboratory, and sleep and waking were monitored by staff and actigraphy. Three times each day (1000, 1600, and 2200 hours) subjects were assessed for subjective sleepiness (SSS) and mood (POMS) and were evaluated on a brief performance battery that included psychomotor vigilance (PVT), probed memory (PRM), and serial-addition testing, Once each day they completed a series of visual analog scales (VAS) and reported sleepiness and somatic and cognitive/emotional problems. Sleep restriction resulted in statistically robust cumulative effects on waking functions. SSS ratings, subscale scores for fatigue, confusion, tension, and total mood disturbance from the POMS and VAS ratings of mental exhaustion and stress were evaluated across days of restricted sleep (p = 0.009 to p = 0.0001). PVT performance parameters, including the frequency and duration of lapses, were also significantly increased by restriction (p = 0.018 to p = 0.0001). Significant time-of-day effects were evident in SSS and PVT data, but time-of-day did not interact with the effects of sleep restriction across days. The temporal profiles of cumulative changes in neurobehavioral measures of alertness as a function of sleep restriction were generally consistent. Subjective changes tended to precede performance changes by 1 day, but overall changes in both classes of measure were greatest during the first 2 days (P1, P2) and last 2 days (P6, P7) of sleep restriction. Data from subsets of subjects also showed: 1) that significant decreases in the MSLT occurred during sleep restriction, 2) that the elevated sleepiness and performance deficits continued beyond day 7 of restriction, and 3) that recovery from these deficits appeared to require two full nights of sleep. The cumulative increase in performance lapses across days of sleep restriction correlated closely with MSLT results (r = -0.95) from an earlier comparable experiment by Carskadon and Dement (1). These findings suggest that cumulative nocturnal sleep debt had a dynamic and escalating analog in cumulative daytime sleepiness and that asymptotic or steady-state sleepiness was not achieved in response to sleep restriction.
                Bookmark

                Author and article information

                Journal
                Neuropsychopharmacology
                Neuropsychopharmacol.
                Springer Science and Business Media LLC
                0893-133X
                1740-634X
                June 8 2019
                Article
                10.1038/s41386-019-0432-6
                6879580
                31176308
                4464f301-6090-4155-82d1-85aee3ebddc7
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article