13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China

      , , ,
      Science of The Total Environment
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Compound climate extremes such as drought and high temperature have a greater impact on agricultural production than the individual extremes. An increasing frequency and intensity of the compound climate extremes has been observed and projected under climate change, yet partitioning the total impacts to individual ones on crop yield has not been well assessed. In this study, we assessed the compound and separate effects of drought and high temperature on maize yield under 9 climate-year types (CYTs) with different combinations of precipitation and temperature in Northeast China (NEC). The well-validated Agricultural Production Systems Simulator (APSIM) model was used to simulate the maize yield, driven by historical (1981-2017) and future climate data (2021-2060). The results show that CYTs of warm (warm-dry, warm-wet, warm) are prominent in the future under both Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. However, CYT of warm-wet increased mostly (11.5%) under RCP8.5, while warm-dry increased most (12.3%) under RCP4.5. The magnitude of maize yield loss caused by the compound of high temperature and drought (18.75%) is higher than the individual ones (drought 17.32% and high temperature 1.27%). There are variations in the effects of stresses on maize yield among CYTs and the yield reductions by the compound effects of drought and high temperature were warm-dry > warm > rainless > warm-wet > normal > cold-dry > cold > rainy > cold-wet. In addition, the yield loss was negatively correlated with Tmax and VPDmax but positively correlated with Prec. These findings imply the importance of fully considering the selection of heat and drought-resistant varieties and implementing supplementary irrigation for future climate mitigation strategies during maize production in NEC.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Influence of extreme weather disasters on global crop production.

          In recent years, several extreme weather disasters have partially or completely damaged regional crop production. While detailed regional accounts of the effects of extreme weather disasters exist, the global scale effects of droughts, floods and extreme temperature on crop production are yet to be quantified. Here we estimate for the first time, to our knowledge, national cereal production losses across the globe resulting from reported extreme weather disasters during 1964-2007. We show that droughts and extreme heat significantly reduced national cereal production by 9-10%, whereas our analysis could not identify an effect from floods and extreme cold in the national data. Analysing the underlying processes, we find that production losses due to droughts were associated with a reduction in both harvested area and yields, whereas extreme heat mainly decreased cereal yields. Furthermore, the results highlight ~7% greater production damage from more recent droughts and 8-11% more damage in developed countries than in developing ones. Our findings may help to guide agricultural priorities in international disaster risk reduction and adaptation efforts.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Increasing drought under global warming in observations and models

            Aiguo Dai (2013)
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              APSIM – Evolution towards a new generation of agricultural systems simulation

                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                March 2022
                March 2022
                : 812
                : 152461
                Article
                10.1016/j.scitotenv.2021.152461
                34942238
                445b9f84-8994-4cb2-8b0a-12ae04b803a9
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article