7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Environmentally responsive plasmonic nanoassemblies for biosensing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Assemblies of plasmonic nanoparticles enable new modalities for biosensing.

          Abstract

          Assemblies of plasmonic nanoparticles enable new modalities for biosensing. Engineered superstructures from metal nanoparticles can enhance the plasmon resonances and chiroptical activity of nanoscale dispersions. Such phenomena are keys to the fabrication of highly sensitive, selective and fast-responding detection platforms, making them promising candidates for clinical applications. This tutorial review summarizes and discusses recent advances in this area. The topics covered in the review include the basic strategies adopted for assembly and engineering of plasmonic nanoparticles, optical properties of the assembled nanostructures and their applications to both in vitro and in vivo detection of biological compounds. We also offer our vision of the future prospects of this field of research. Among emerging applications in this area are novel nanosensors and platforms, for food safety, environmental monitoring, health safeguarding, as well as biodefense.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Biosensing with plasmonic nanosensors.

          Recent developments have greatly improved the sensitivity of optical sensors based on metal nanoparticle arrays and single nanoparticles. We introduce the localized surface plasmon resonance (LSPR) sensor and describe how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation. We then describe recent progress in three areas representing the most significant challenges: pushing sensitivity towards the single-molecule detection limit, combining LSPR with complementary molecular identification techniques such as surface-enhanced Raman spectroscopy, and practical development of sensors and instrumentation for routine use and high-throughput detection. This review highlights several exceptionally promising research directions and discusses how diverse applications of plasmonic nanoparticles can be integrated in the near future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection.

            Surface-enhanced Raman scattering (SERS)-based signal amplification and detection methods using plasmonic nanostructures have been widely investigated for imaging and sensing applications. However, SERS-based molecule detection strategies have not been practically useful because there is no straightforward method to synthesize and characterize highly sensitive SERS-active nanostructures with sufficiently high yield and efficiency, which results in an extremely low cross-section area in Raman sensing. Here, we report a high-yield synthetic method for SERS-active gold-silver core-shell nanodumbbells, where the gap between two nanoparticles and the Raman-dye position and environment can be engineered on the nanoscale. Atomic-force-microscope-correlated nano-Raman measurements of individual dumbbell structures demonstrate that Raman signals can be repeatedly detected from single-DNA-tethered nanodumbbells. These programmed nanostructure fabrication and single-DNA detection strategies open avenues for the high-yield synthesis of optically active smart nanoparticles and structurally reproducible nanostructure-based single-molecule detection and bioassays.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response

              Surface plasmon resonances generated in metallic nanostructures can be utilized to tailor electromagnetic fields. The precise spatial arrangement of such structures can result in surprising optical properties that are not found in any naturally occurring material. Here, the designed activity emerges from collective effects of singular components equipped with limited individual functionality. Top-down fabrication of plasmonic materials with a predesigned optical response in the visible range by conventional lithographic methods has remained challenging due to their limited resolution, the complexity of scaling, and the difficulty to extend these techniques to three-dimensional architectures. Molecular self-assembly provides an alternative route to create such materials which is not bound by the above limitations. We demonstrate how the DNA origami method can be used to produce plasmonic materials with a tailored optical response at visible wavelengths. Harnessing the assembly power of 3D DNA origami, we arranged metal nanoparticles with a spatial accuracy of 2 nm into nanoscale helices. The helical structures assemble in solution in a massively parallel fashion and with near quantitative yields. As a designed optical response, we generated giant circular dichroism and optical rotary dispersion in the visible range that originates from the collective plasmon-plasmon interactions within the nanohelices. We also show that the optical response can be tuned through the visible spectrum by changing the composition of the metal nanoparticles. The observed effects are independent of the direction of the incident light and can be switched by design between left- and right-handed orientation. Our work demonstrates the production of complex bulk materials from precisely designed nanoscopic assemblies and highlights the potential of DNA self-assembly for the fabrication of plasmonic nanostructures.
                Bookmark

                Author and article information

                Journal
                CSRVBR
                Chemical Society Reviews
                Chem. Soc. Rev.
                Royal Society of Chemistry (RSC)
                0306-0012
                1460-4744
                2018
                2018
                : 47
                : 13
                : 4677-4696
                Affiliations
                [1 ]State Key Lab of Food Science and Technology
                [2 ]Jiangnan University
                [3 ]Wuxi
                [4 ]People's Republic of China
                [5 ]International Joint Research Laboratory for Biointerface and Biodetection
                [6 ]CIC biomaGUNE and CIBER-BBN
                [7 ]20014 Donostia-San Sebastian
                [8 ]Spain
                [9 ]Department of Chemical Engineering
                [10 ]University of Michigan
                [11 ]Ann Arbor
                [12 ]USA
                [13 ]Biointerfaces Institute, University of Michigan
                [14 ]Ikerbasque
                [15 ]Basque Foundation for Science
                Article
                10.1039/C7CS00894E
                29737984
                44257835-17ec-4de9-99d2-5215883fd0f4
                © 2018

                Free to read

                http://rsc.li/journals-terms-of-use#chorus

                History

                Comments

                Comment on this article