Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The complement system in IgAN: mechanistic context for therapeutic opportunities

      , ,
      Nephrology Dialysis Transplantation
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The complement system plays a crucial role in innate immunity, providing essential defense against pathogens. However, uncontrolled or prolonged activation of the complement cascade can significantly contribute to kidney damage, especially in cases of glomerulonephritis. Immunoglobulin A nephropathy (IgAN), the most prevalent form of primary glomerulonephritis, has growing evidence supporting the involvement of complement alternative and lectin pathways. In fact, patients with IgAN experience complement activation within their kidney tissue, which may be involved in the development of glomerular damage and the progression of IgAN. Complement activation has emerged as a significant area of interest in IgAN, with numerous complement-targeting agents currently being explored within this field. Nevertheless, the exact mechanisms of complement activation and their role in IgAN progression require comprehensive elucidation. This review seeks to contextualize the proposed mechanisms of complement activation within the various stages (“hits”) of IgAN pathogenesis, while also addressing the clinical implications and anticipated outcomes of complement inhibition in IgAN.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: found

          Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens

          We performed a genome-wide association study (GWAS) of IgA nephropathy (IgAN), the most common form of glomerulonephritis, with discovery and follow-up in 20,612 individuals of European and East Asian ancestry. We identified six novel genome-wide significant associations, four in ITGAM-ITGAX, VAV3 and CARD9 and two new independent signals at HLA-DQB1 and DEFA. We replicated the nine previously reported signals, including known SNPs in the HLA-DQB1 and DEFA loci. The cumulative burden of risk alleles is strongly associated with age at disease onset. Most loci are either directly associated with risk of inflammatory bowel disease (IBD) or maintenance of the intestinal epithelial barrier and response to mucosal pathogens. The geo-spatial distribution of risk alleles is highly suggestive of multi-locus adaptation and the genetic risk correlates strongly with variation in local pathogens, particularly helminth diversity, suggesting a possible role for host-intestinal pathogen interactions in shaping the genetic landscape of IgAN.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease.

            IgA nephropathy (IgAN) is characterized by glomerular co-deposition of IgA and complement components. Earlier studies showed that IgA activates the alternative pathway of complement, whereas more recent data also indicate activation of the lectin pathway. The lectin pathway can be activated by binding of mannose-binding lectin (MBL) and ficolins to carbohydrate ligands, followed by activation of MBL-associated serine proteases and C4. This study examined the potential role of the lectin pathway in IgAN. Renal biopsies of patients with IgAN (n=60) showed mesangial deposition of IgA1 but not IgA2. Glomerular deposition of MBL was observed in 15 (25%) of 60 cases with IgAN and showed a mesangial pattern. All MBL-positive case, but none of the MBL-negative cases showed glomerular co-deposition of L-ficolin, MBL-associated serine proteases, and C4d. Glomerular deposition of MBL and L-ficolin was associated with more pronounced histologic damage, as evidenced by increased mesangial proliferation, extracapillary proliferation, glomerular sclerosis, and interstitial infiltration, as well as with significantly more proteinuria. Patients who had IgAN with or without glomerular MBL deposition did not show significant differences in serum levels of MBL, L-ficolin, or IgA or in the size distribution of circulating IgA. Furthermore, in vitro experiments showed clear binding of MBL to polymeric but not monomeric patient IgA, without a significant difference between both groups. Together, these findings strongly point to a role for the lectin pathway of complement in glomerular complement activation in IgAN and suggest a contribution for both MBL and L-ficolin in the progression of the disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide association study identifies susceptibility loci for IgA nephropathy.

              We carried out a genome-wide association study of IgA nephropathy, a major cause of kidney failure worldwide. We studied 1,194 cases and 902 controls of Chinese Han ancestry, with targeted follow up in Chinese and European cohorts comprising 1,950 cases and 1,920 controls. We identified three independent loci in the major histocompatibility complex, as well as a common deletion of CFHR1 and CFHR3 at chromosome 1q32 and a locus at chromosome 22q12 that each surpassed genome-wide significance (P values for association between 1.59 × 10⁻²⁶ and 4.84 × 10⁻⁹ and minor allele odds ratios of 0.63-0.80). These five loci explain 4-7% of the disease variance and up to a tenfold variation in interindividual risk. Many of the alleles that protect against IgA nephropathy impart increased risk for other autoimmune or infectious diseases, and IgA nephropathy risk allele frequencies closely parallel the variation in disease prevalence among Asian, European and African populations, suggesting complex selective pressures.
                Bookmark

                Author and article information

                Contributors
                Journal
                Nephrology Dialysis Transplantation
                Oxford University Press (OUP)
                0931-0509
                1460-2385
                June 29 2023
                June 29 2023
                Article
                10.1093/ndt/gfad140
                37385820
                4421cdad-a4f2-44b4-be3b-3ac673b3bc9c
                © 2023

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content145

                Cited by8

                Most referenced authors886