35
views
0
recommends
+1 Recommend
0 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of Leishmania metalloprotease GP63 on macrophage signaling

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The intramacrophage protozoan parasites of Leishmania genus have developed sophisticated ways to subvert the innate immune response permitting their infection and propagation within the macrophages of the mammalian host. Several Leishmania virulence factors have been identified and found to be of importance for the development of leishmaniasis. However, recent findings are now further reinforcing the critical role played by the zinc-metalloprotease GP63 as a virulence factor that greatly influence host cell signaling mechanisms and related functions. GP63 has been found to be involved not only in the cleavage and degradation of various kinases and transcription factors, but also to be the major molecule modulating host negative regulatory mechanisms involving for instance protein tyrosine phosphatases (PTPs). Those latter being well recognized for their pivotal role in the regulation of a great number of signaling pathways. In this review article, we are providing a complete overview about the role of Leishmania GP63 in the mechanisms underlying the subversion of macrophage signaling and functions.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          AP-1 function and regulation.

          AP-1 (activating protein-1) is a collective term referring to dimeric transcription factors composed of Jun, Fos or ATF (activating transcription factor) subunits that bind to a common DNA site, the AP-1-binding site. As the complexity of our knowledge of AP-1 factors has increased, our understanding of their physiological function has decreased. This trend, however, is beginning to be reversed due to the recent studies of gene-knockout mice and cell lines deficient in specific AP-1 components. Such studies suggest that different AP-1 factors may regulate different target genes and thus execute distinct biological functions. Also, the involvement of AP-1 factors in functions such as cell proliferation and survival has been made somewhat clearer as a result of such studies. In addition, there has been considerable progress in understanding some of the mechanisms and signaling pathways involved in the regulation of AP-1 activity. In addition to regulation by heterodimerization between Jun, Fos and ATF proteins, AP-1 activity is regulated through interactions with specific protein kinases and a variety of transcriptional coactivators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages.

            Specialized secretion systems are used by numerous bacterial pathogens to export virulence factors into host target cells. Leishmania and other eukaryotic intracellular pathogens also deliver effector proteins into host cells; however, the mechanisms involved have remained elusive. In this report, we identify exosome-based secretion as a general mechanism for protein secretion by Leishmania, and show that exosomes are involved in the delivery of proteins into host target cells. Comparative quantitative proteomics unambiguously identified 329 proteins in Leishmania exosomes, accounting for >52% of global protein secretion from these organisms. Our findings demonstrate that infection-like stressors (37 degrees C +/- pH 5.5) upregulated exosome release more than twofold and also modified exosome protein composition. Leishmania exosomes and exosomal proteins were detected in the cytosolic compartment of infected macrophages and incubation of macrophages with exosomes selectively induced secretion of IL-8, but not TNF-alpha. We thus provide evidence for an apparently broad-based mechanism of protein export by Leishmania. Moreover, we describe a mechanism for the direct delivery of Leishmania molecules into macrophages. These findings suggest that, like mammalian exosomes, Leishmania exosomes function in long-range communication and immune modulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of a nuclear Stat1 protein tyrosine phosphatase.

              Upon interferon (IFN) stimulation, Stat1 becomes tyrosine phosphorylated and translocates into the nucleus, where it binds to DNA to activate transcription. The activity of Stat1 is dependent on tyrosine phosphorylation, and its inactivation in the nucleus is accomplished by a previously unknown protein tyrosine phosphatase (PTP). We have now purified a Stat1 PTP activity from HeLa cell nuclear extract and identified it as TC45, the nuclear isoform of the T-cell PTP (TC-PTP). TC45 can dephosphorylate Stat1 both in vitro and in vivo. Nuclear extracts lacking TC45 fail to dephosphorylate Stat1. Furthermore, the dephosphorylation of IFN-induced tyrosine-phosphorylated Stat1 is defective in TC-PTP-null mouse embryonic fibroblasts (MEFs) and primary thymocytes. Reconstitution of TC-PTP-null MEFs with TC45, but not the endoplasmic reticulum (ER)-associated isoform TC48, rescues the defect in Stat1 dephosphorylation. The dephosphorylation of Stat3, but not Stat5 or Stat6, is also affected in TC-PTP-null cells. Our results identify TC45 as a PTP responsible for the dephosphorylation of Stat1 in the nucleus.
                Bookmark

                Author and article information

                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Inf. Microbio.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                26 March 2012
                16 May 2012
                2012
                : 2
                : 72
                Affiliations
                simpleFaculty of Medicine, Department of Medicine, Microbiology, and Immunology, The Research Institute of the McGill University Health Centre, McGill University Montréal, QC, Canada
                Author notes

                Edited by: Albert Descoteaux, INRS- Institut Armand-Frappier, Canada

                Reviewed by: Srinand Sreevastan, University of Minnesota, USA; Jose A. Bengoechea, Fundacion Caubet-CIMERA Illes Balears, Spain

                *Correspondence: Martin Olivier, Department of Microbiology and Immunology, McGill University, Duff Medical Building (Room 610), 3775 University Street, Montréal, QC H3A 2B4, Canada. e-mail: martin.olivier@ 123456mcgill.ca
                Article
                10.3389/fcimb.2012.00072
                3417651
                22919663
                43bfb5c9-0e10-4c4a-a127-db0a504953e6
                Copyright © 2012 Isnard, Shio and Olivier.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

                History
                : 26 February 2012
                : 03 May 2012
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 91, Pages: 9, Words: 8681
                Categories
                Microbiology
                Review Article

                Infectious disease & Microbiology
                leishmania,host-pathogen interaction,signaling,macrophage,innate immunity,gp63

                Comments

                Comment on this article