5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mesoscopic protein-rich clusters host the nucleation of mutant p53 amyloid fibrils

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The protein p53 is a crucial tumor suppressor, often called “the guardian of the genome”; however, mutations transform p53 into a powerful cancer promoter. The oncogenic capacity of mutant p53 has been ascribed to enhanced propensity to fibrillize and recruit other cancer fighting proteins in the fibrils, yet the pathways of fibril nucleation and growth remain obscure. Here, we combine immunofluorescence three-dimensional confocal microscopy of human breast cancer cells with light scattering and transmission electron microscopy of solutions of the purified protein and molecular simulations to illuminate the mechanisms of phase transformations across multiple length scales, from cellular to molecular. We report that the p53 mutant R248Q (R, arginine; Q, glutamine) forms, both in cancer cells and in solutions, a condensate with unique properties, mesoscopic protein-rich clusters. The clusters dramatically diverge from other protein condensates. The cluster sizes are decoupled from the total cluster population volume and independent of the p53 concentration and the solution concentration at equilibrium with the clusters varies. We demonstrate that the clusters carry out a crucial biological function: they host and facilitate the nucleation of amyloid fibrils. We demonstrate that the p53 clusters are driven by structural destabilization of the core domain and not by interactions of its extensive unstructured region, in contradistinction to the dense liquids typical of disordered and partially disordered proteins. Two-step nucleation of mutant p53 amyloids suggests means to control fibrillization and the associated pathologies through modifying the cluster characteristics. Our findings exemplify interactions between distinct protein phases that activate complex physicochemical mechanisms operating in biological systems.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Liquid-like droplet formation by tumor suppressor p53 induced by multivalent electrostatic interactions between two disordered domains

          Early in vivo studies demonstrated the involvement of a tumor-suppressing transcription factor, p53, into cellular droplets such as Cajal and promyelocytic leukemia protein bodies, suggesting that the liquid-liquid phase separation (LLPS) might be involved in the cellular functions of p53. To examine this possibility, we conducted extensive investigations on the droplet formation of p53 in vitro. First, p53 itself was found to form liquid-like droplets at neutral and slightly acidic pH and at low salt concentrations. Truncated p53 mutants modulated droplet formation, suggesting the importance of multivalent electrostatic interactions among the N-terminal and C-terminal domains. Second, FRET efficiency measurements for the dimer mutants of p53 revealed that distances between the core domains and between the C-terminal domains were modulated in an opposite manner within the droplets. Third, the molecular crowding agents were found to promote droplet formation, whereas ssDNA, dsDNA, and ATP, to suppress it. Finally, the p53 mutant mimicking posttranslational phosphorylation did not form the droplets. We conclude that p53 itself has a potential to form droplets that can be controlled by cellular molecules and by posttranslational modifications, suggesting that LLPS might be involved in p53 function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Origin of Anomalous Mesoscopic Phases in Protein Solutions

            Long-living mesoscopic clusters of a dense protein liquid are a necessary kinetic intermediate for the formation of solid aggregates of native and misfolded protein molecules; in turn, these aggregates underlie physiological and pathological processes and laboratory and industrial procedures. We argue that the clusters consist of a nonequilibrium mixture of single protein molecules and long-lived complexes of proteins. The puzzling mesoscopic size of the clusters is determined by the lifetime and diffusivity of these complexes. We predict and observe a crossover of cluster dynamics to critical-like density fluctuations at high protein concentrations. We predict and experimentally confirm that cluster dynamics obey a universal, diffusion-like scaling with time and wave vector, including in the critical-like regime. Nontrivial dependencies of the cluster size and volume fraction on the protein concentration are established. Possible mechanisms of complex formation include domain swapping, hydration forces, dispersive interactions, and other, system-specific, interactions. We highlight the significance of the hydration interaction and domain swapping with regard to the ubiquity of the clusters and their sensitivity to the chemical composition of the solvent. Our findings suggest novel ways to control protein aggregation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Targeting Therapies for the p53 Protein in Cancer Treatments

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 02 2021
                March 09 2021
                March 02 2021
                March 09 2021
                : 118
                : 10
                : e2015618118
                Article
                10.1073/pnas.2015618118
                43abfc92-4f5c-49cb-ad39-255864956ed0
                © 2021

                Free to read

                https://www.pnas.org/site/aboutpnas/licenses.xhtml

                History

                Comments

                Comment on this article