14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fat Embolism Syndrome in Sickle Cell Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fat embolism syndrome is a devastating complication of sickle cell disease resulting from extensive bone marrow necrosis and associated with high mortality rates, while survivors often suffer severe neurological sequelae. Despite that, the syndrome remains under-recognised and under-diagnosed. Paradoxically, it affects exclusively patients with mild forms of sickle cell disease, predominantly HbSC and HbSβ +. A significant number of cases occur in the context of human parvovirus B19 infection. We provide here a brief summary of the existing literature and describe our experience treating 8 patients in our institution. One patient had HbSS, 6 HbSC and 1 HbSβ +. All patients developed type I respiratory failure and neurological involvement either at presentation or within the first 72 h. The most striking laboratory abnormality was a 100-fold increase of the serum ferritin from baseline. Seven patients received emergency red cell exchange and 1 simple transfusion. Two patients (25%) died, 2 patients (25%) suffered severe neurological impairment and 1 (12%) mild neurological impairment on discharge, while 3 (38%) patients made a complete recovery. With long-term follow-up, 1 patient with severe neurological impairment and one patient with mild neurological impairment made dramatic improvements, making the long-term complete recovery or near complete recovery rate 63%. Immediate red cell exchange transfusion can be lifesaving and should be instituted as soon as the syndrome is suspected. However, as the outcomes remain unsatisfactory despite the increasing use of red cell exchange, we suggest additional therapeutic measures such as therapeutic plasma exchange and pre-emptive transfusion for high risk patients.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: found

          COVID-19: consider cytokine storm syndromes and immunosuppression

          As of March 12, 2020, coronavirus disease 2019 (COVID-19) has been confirmed in 125 048 people worldwide, carrying a mortality of approximately 3·7%, 1 compared with a mortality rate of less than 1% from influenza. There is an urgent need for effective treatment. Current focus has been on the development of novel therapeutics, including antivirals and vaccines. Accumulating evidence suggests that a subgroup of patients with severe COVID-19 might have a cytokine storm syndrome. We recommend identification and treatment of hyperinflammation using existing, approved therapies with proven safety profiles to address the immediate need to reduce the rising mortality. Current management of COVID-19 is supportive, and respiratory failure from acute respiratory distress syndrome (ARDS) is the leading cause of mortality. 2 Secondary haemophagocytic lymphohistiocytosis (sHLH) is an under-recognised, hyperinflammatory syndrome characterised by a fulminant and fatal hypercytokinaemia with multiorgan failure. In adults, sHLH is most commonly triggered by viral infections 3 and occurs in 3·7–4·3% of sepsis cases. 4 Cardinal features of sHLH include unremitting fever, cytopenias, and hyperferritinaemia; pulmonary involvement (including ARDS) occurs in approximately 50% of patients. 5 A cytokine profile resembling sHLH is associated with COVID-19 disease severity, characterised by increased interleukin (IL)-2, IL-7, granulocyte-colony stimulating factor, interferon-γ inducible protein 10, monocyte chemoattractant protein 1, macrophage inflammatory protein 1-α, and tumour necrosis factor-α. 6 Predictors of fatality from a recent retrospective, multicentre study of 150 confirmed COVID-19 cases in Wuhan, China, included elevated ferritin (mean 1297·6 ng/ml in non-survivors vs 614·0 ng/ml in survivors; p 39·4°C 49 Organomegaly None 0 Hepatomegaly or splenomegaly 23 Hepatomegaly and splenomegaly 38 Number of cytopenias * One lineage 0 Two lineages 24 Three lineages 34 Triglycerides (mmol/L) 4·0 mmol/L 64 Fibrinogen (g/L) >2·5 g/L 0 ≤2·5 g/L 30 Ferritin ng/ml 6000 ng/ml 50 Serum aspartate aminotransferase <30 IU/L 0 ≥30 IU/L 19 Haemophagocytosis on bone marrow aspirate No 0 Yes 35 Known immunosuppression † No 0 Yes 18 The Hscore 11 generates a probability for the presence of secondary HLH. HScores greater than 169 are 93% sensitive and 86% specific for HLH. Note that bone marrow haemophagocytosis is not mandatory for a diagnosis of HLH. HScores can be calculated using an online HScore calculator. 11 HLH=haemophagocytic lymphohistiocytosis. * Defined as either haemoglobin concentration of 9·2 g/dL or less (≤5·71 mmol/L), a white blood cell count of 5000 white blood cells per mm3 or less, or platelet count of 110 000 platelets per mm3 or less, or all of these criteria combined. † HIV positive or receiving longterm immunosuppressive therapy (ie, glucocorticoids, cyclosporine, azathioprine).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Guidelines on the Use of Therapeutic Apheresis in Clinical Practice - Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Eighth Special Issue.

            The American Society for Apheresis (ASFA) Journal of Clinical Apheresis (JCA) Special Issue Writing Committee is charged with reviewing, updating and categorizing indications for the evidence-based use of therapeutic apheresis (TA) in human disease. Since the 2007 JCA Special Issue (Fourth Edition), the committee has incorporated systematic review and evidence-based approaches in the grading and categorization of apheresis indications. This Eighth Edition of the JCA Special Issue continues to maintain this methodology and rigor in order to make recommendations on the use of apheresis in a wide variety of diseases/conditions. The JCA Eighth Edition, like its predecessor, continues to apply the category and grading system definitions in fact sheets. The general layout and concept of a fact sheet that was introduced in the Fourth Edition, has largely been maintained in this edition. Each fact sheet succinctly summarizes the evidence for the use of TA in a specific disease entity or medical condition. The Eighth Edition comprises 84 fact sheets for relevant diseases and medical conditions, with 157 graded and categorized indications and/or TA modalities. The Eighth Edition of the JCA Special Issue seeks to continue to serve as a key resource that guides the utilization of TA in the treatment of human disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sickle Cell Disease

              New England Journal of Medicine, 376(16), 1561-1573
                Bookmark

                Author and article information

                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                08 November 2020
                November 2020
                : 9
                : 11
                : 3601
                Affiliations
                [1 ]Haemoglobinopathy Service, Department of Haematology, Homerton University Hospital NHS Foundation Trust, London E9 6SR, UK; j.abukar@ 123456nhs.net
                [2 ]Research and Innovation Department, Homerton University Hospital NHS Foundation Trust, London E9 6SR, UK; jessica.bristowe@ 123456nhs.net
                [3 ]School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK
                Author notes
                Article
                jcm-09-03601
                10.3390/jcm9113601
                7695297
                33171683
                439c1a3a-7584-4029-8967-9ca0eeaff0c8
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 October 2020
                : 07 November 2020
                Categories
                Article

                fat embolism syndrome,bone marrow necrosis,sickle cell disease,parvovirus b19,exchange transfusion,therapeutic plasma exchange

                Comments

                Comment on this article