31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Non‐Noble‐Metal‐Based Electrocatalysts toward the Oxygen Evolution Reaction

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          Opportunities and challenges for a sustainable energy future.

          Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. Solar and water-based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles.

              The efficiency of many energy storage technologies, such as rechargeable metal-air batteries and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen evolution reaction (OER). We found that Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF) catalyzes the OER with intrinsic activity that is at least an order of magnitude higher than that of the state-of-the-art iridium oxide catalyst in alkaline media. The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an e(g) symmetry of surface transition metal cations in an oxide. The peak OER activity was predicted to be at an e(g) occupancy close to unity, with high covalency of transition metal-oxygen bonds.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley
                1616-301X
                1616-3028
                April 2020
                February 16 2020
                April 2020
                : 30
                : 15
                : 1910274
                Affiliations
                [1 ]School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
                [2 ]Green Catalysis Center, College of ChemistryZhengzhou University Zhengzhou 450001 P. R. China
                Article
                10.1002/adfm.201910274
                437fe5ef-64ea-4251-9b3a-f4e7b3c68c8a
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article