9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      MusE GAs FLOw and Wind (MEGAFLOW) VIII. Discovery of a Mgii emission halo probed by a quasar sightline

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Using deep ($11.2\, \rm{h}$) VLT/MUSE data from the MEGAFLOW survey, we report the first detection of extended $\rm{Mg\, \small {II}}\(emission from a galaxy’s halo that is probed by a quasar sightline. The \)\rm{Mg\, \small {II}}\, \lambda \lambda \, 2796, 2803\(emission around the z = 0.702 galaxy (\)\log (M_*/\rm{M_\odot })=10.05_{-0.11}^{+0.15}{}$) is detected out to $\approx 25\, \hbox{kpc}\(from the central galaxy and covers \)1.0\times 10^3\, \hbox{kpc}^2\(above a surface brightness of \)14\times 10^{-19}\, \rm{erg}\, \rm{s}^{-1}\, \rm{cm}^{-2}\, \rm{arcsec}^{-2}{}\((\)2\, \sigma$; integrated over $1200\, \rm{km\, s}^{-1}= 19\mathring{\rm A}\(and averaged over \)1.5\, \rm{arcsec}^{2}$). The $\rm{Mg\, \small {II}}\(emission around this highly inclined galaxy (i ≃ 75 deg) is strongest along the galaxy’s projected minor axis, consistent with the \)\rm{Mg\, \small {II}}\(gas having been ejected from the galaxy into a bi-conical structure. The quasar sightline, which is aligned with the galaxy’s minor axis, shows strong \)\rm{Mg\, \small {II}}\(absorption (\)\hbox{$EW_0^{\lambda 2796}$}{}=1.8{}\, \mathring{\rm A}$) at an impact parameter of $39{}\, \hbox{kpc}\(from the galaxy. Comparing the kinematics of both the emission and the absorption − probed with VLT/UVES − to the expectation from a simple toy model of a bi-conical outflow, we find good consistency when assuming a relatively slow outflow (\)v_\rm{out}=130{}\, \rm{km\, s}^{-1}$). We investigate potential origins of the extended $\rm{Mg\, \small {II}}\(emission using simple toy models. With continuum scattering models we encounter serious difficulties in explaining the luminosity of the \)\rm{Mg\, \small {II}}\(halo and in reconciling density estimates from emission and absorption. Instead, we find that shocks might be a more viable source to power the extended \)\rm{Mg\, \small {II}}\((and non-resonant \)[\rm{O\, \small {II}}]$) emission.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: not found
          • Article: not found

          Matplotlib: A 2D Graphics Environment

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Astropy: A community Python package for astronomy

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The NumPy Array: A Structure for Efficient Numerical Computation

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Monthly Notices of the Royal Astronomical Society
                Oxford University Press (OUP)
                0035-8711
                1365-2966
                November 2021
                September 16 2021
                November 2021
                September 16 2021
                July 28 2021
                : 507
                : 3
                : 4294-4315
                Affiliations
                [1 ]Univ Lyon, Univ Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230 Saint-Genis-Laval, France
                [2 ]Institute for Computational Astrophysics and Department of Astronomy & Physics, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia B3H 3C3, Canada
                [3 ]Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany
                [4 ]Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands
                [5 ]Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, CH-1290 Versoix, Switzerland
                [6 ]Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Golm, Germany
                [7 ]GEPI, Observatoire de Paris, CNRS-UMR8111, PSL Research University, Univ. Paris Diderot, 5 place Jules Janssen, F-92195 Meudon, France
                [8 ]Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse, CNRS, UPS, F-31400 Toulouse, France
                [9 ]IUCAA, Post Bag-04, Ganeshkhind, Pune 411007, India
                [10 ]Department of Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich, Switzerland
                [11 ]Dipartimento di Fisica ‘G. Occhialini’, Università degli Studi di Milano Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
                [12 ]Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal
                Article
                10.1093/mnras/stab2165
                437a91c8-3c20-4ea2-9911-382f93fc2ec5
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article