24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of a novel C-kinesin (KIFC3) abundantly expressed in vertebrate retina and RPE.

      1 , ,
      Experimental eye research
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many forms of intracellular transport are mediated by microtubule-dependent motors of the kinesin superfamily (KIFs). To identify kinesins expressed in human retina and RPE, we used degenerate primer RT-PCR to amplify a approximately 440 bp kinesin motor domain fragment from human retinal and RPE messenger RNAs. Four distinct kinesins were detected: one C-kinesin (HsKIFC3); one kinesin from the unc104/KIF1 family [HsKIF1A]; and the ubiquitous and neuronal forms of conventional kinesin heavy chain [HsuKHC and HsnKHC]. The C-kinesin HsKIFC3 comprised 33.3% of the retinal clones and was 60% identical to FKIF2, the most abundant kinesin detected in a previous screen of fish retina and 95% identical to a fragment of MmKifC3 recently amplified from mouse brain. Elsewhere we have reported the sequence of HsKIFC3 and shown that it maps to the same locus on chromosome 16q13-q21 as Bardet-Biedl syndrome Type II, a hereditary retinal degeneration. We describe here the kinesin PCR screen of human retina and RPE and examine the tissue and subcellular distribution of KIFC3 in both fish and human retina using an antibody raised against a peptide conserved between FKIF2 and HsKIFC3. This peptide antibody identified a single approximately 80 kDa band in Western blots of fish and human retina and RPE. In both fish and human retina this antibody strongly labeled photoreceptor terminals in the outer plexiform layer, suggesting that FKIF2/KIFC3 may play some role in the photoreceptor synapse.

          Related collections

          Author and article information

          Journal
          Exp Eye Res
          Experimental eye research
          Elsevier BV
          0014-4835
          0014-4835
          Jul 1999
          : 69
          : 1
          Affiliations
          [1 ] Department of Molecular and Cell Biology, University of California, 335 Life Sciences Addition, Berkeley, CA, 94720-3200, USA.
          Article
          S0014-4835(99)90671-1
          10.1006/exer.1999.0671
          10375449
          434da8b0-6a91-43df-b8ce-29ddb81fc18a
          Copyright 1999 Academic Press.
          History

          Comments

          Comment on this article