36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      VEGF may contribute to macrophage recruitment and M2 polarization in the decidua

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is increasingly evident that cytokines and growth factors produced in the decidua play a pivotal role in the regulation of the local immune microenvironment and the establishment of pregnancy. One of the major growth factors produced in the decidua is vascular endothelial growth factor (VEGF), which acts not only on endothelial cells, but also on multiple other cell types, including macrophages. We sought to determine whether decidua-derived VEGF affects macrophage recruitment and polarization using human endometrial/decidual tissue samples, primary human endometrial stromal cells (ESCs), and the human monocyte cell line THP1. In situ hybridization was used for assessment of local VEGF expression and immunohistochemistry was used for identification and localization of CD68-positive endometrial macrophages. Macrophage migration in culture was assessed using a transwell migration assay, and the various M1/M2 phenotypic markers and VEGF expression were assessed using quantitative real-time PCR (qRT-PCR). We found dramatic increases in both VEGF levels and macrophage numbers in the decidua during early pregnancy compared to the secretory phase endometrium (non-pregnant), with a significant increase in M2 macrophage markers, suggesting that M2 is the predominant macrophage phenotype in the decidua. However, decidual samples from preeclamptic pregnancies showed a significant shift in macrophage phenotype markers, with upregulation of M1 and downregulation of M2 markers. In THP1 cultures, VEGF treatment significantly enhanced macrophage migration and induced M1 macrophages to shift to an M2 phenotype. Moreover, treatment with conditioned media from decidualized ESCs induced changes in macrophage migration and polarization similar to that of VEGF treatment. These effects were abrogated by the addition of a potent VEGF inhibitor. Together these results suggest that decidual VEGF plays a significant role in macrophage recruitment and M2 polarization, and that inhibition of VEGF signaling may contribute to the shift in macrophage polarity observed in different pregnancy disorders, including preeclampsia.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Modulation of macrophage phenotype by cell shape.

          Phenotypic polarization of macrophages is regulated by a milieu of cues in the local tissue microenvironment. Although much is known about how soluble factors influence macrophage polarization, relatively little is known about how physical cues present in the extracellular environment might modulate proinflammatory (M1) vs. prohealing (M2) activation. Specifically, the role of cell shape has not been explored, even though it has been observed that macrophages adopt different geometries in vivo. We and others observed that macrophages polarized toward different phenotypes in vitro exhibit dramatic changes in cell shape: M2 cells exhibit an elongated shape compared with M1 cells. Using a micropatterning approach to control macrophage cell shape directly, we demonstrate here that elongation itself, without exogenous cytokines, leads to the expression of M2 phenotype markers and reduces the secretion of inflammatory cytokines. Moreover, elongation enhances the effects of M2-inducing cytokines IL-4 and IL-13 and protects cells from M1-inducing stimuli LPS and IFN-γ. In addition shape- but not cytokine-induced polarization is abrogated when actin and actin/myosin contractility are inhibited by pharmacological agents, suggesting a role for the cytoskeleton in the control of macrophage polarization by cell geometry. Our studies demonstrate that alterations in cell shape associated with changes in ECM architecture may provide integral cues to modulate macrophage phenotype polarization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression.

            Comprehensive analysis of the gene expression profiles associated with human monocyte-to-macrophage differentiation and polarization toward M1 or M2 phenotypes led to the following main results: 1) M-CSF-driven monocyte-to-macrophage differentiation is associated with activation of cell cycle genes, substantiating the underestimated proliferation potential of monocytes. 2) M-CSF leads to expression of a substantial part of the M2 transcriptome, suggesting that under homeostatic conditions a default shift toward M2 occurs. 3) Modulation of genes involved in metabolic activities is a prominent feature of macrophage differentiation and polarization. 4) Lipid metabolism is a main category of modulated transcripts, with expected up-regulation of cyclo-oxygenase 2 in M1 cells and unexpected cyclo-oxygenase 1 up-regulation in M2 cells. 5) Each step is characterized by a different repertoire of G protein-coupled receptors, with five nucleotide receptors as novel M2-associated genes. 6) The chemokinome of polarized macrophages is profoundly diverse and new differentially expressed chemokines are reported. Thus, transcriptome profiling reveals novel molecules and signatures associated with human monocyte-to-macrophage differentiation and polarized activation which may represent candidate targets in pathophysiology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Establishment and characterization of a human acute monocytic leukemia cell line (THP-1).

              A human leukemic cell line (THP-1) cultured from the blood of a boy with acute monocytic leukemia is described. This cell line had Fc and C3b receptors, but no surface or cytoplasmic immunoglobulins. HLA haplotypes of THP-1 were HLA-A2, -A9, -B5, -DRW1 and -DRW2. The monocytic nature of the cell line was characterized by: (1) the presence of alpha-naphthyl butyrate esterase activities which could be inhibited by NaF; (2) lysozyme production; (3) the phagocytosis of latex particles and sensitized sheep erythrocytes; and (4) the ability to restore T-lymphocyte response to Con A. The cells did not possess Epstein-Barr virus-associated nuclear antigen. These results indicate that THP-1 is a leukemia cell line with distinct monocytic markers. During culture, THP-1 maintained these monocytic characteristics for over 14 months.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: InvestigationRole: Writing – original draft
                Role: Formal analysisRole: InvestigationRole: ValidationRole: Writing – original draft
                Role: Writing – review & editing
                Role: Formal analysisRole: ValidationRole: VisualizationRole: Writing – review & editing
                Role: ConceptualizationRole: MethodologyRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                11 January 2018
                2018
                : 13
                : 1
                : e0191040
                Affiliations
                [1 ] Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, United States of America
                [2 ] Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
                [3 ] Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
                University of Georgia, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Article
                PONE-D-17-33446
                10.1371/journal.pone.0191040
                5764356
                29324807
                43260193-cb72-43c8-b6f0-a581110865fd
                © 2018 Wheeler et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 September 2017
                : 27 December 2017
                Page count
                Figures: 6, Tables: 1, Pages: 18
                Funding
                Funded by: Wayne State University Perinatal Initiative
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000912, March of Dimes Foundation;
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000071, National Institute of Child Health and Human Development;
                Award ID: HD088549-01 (NRN partly supported)
                Award Recipient :
                This work was supported by the Wayne State University Perinatal Initiative, March of Dimes Foundation, and was partly supported by the National Institute of Child Health and Human Development (grant no. HD088549-01) all to NRN. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Macrophages
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Macrophages
                Medicine and Health Sciences
                Women's Health
                Maternal Health
                Pregnancy
                Medicine and Health Sciences
                Women's Health
                Obstetrics and Gynecology
                Pregnancy
                Biology and Life Sciences
                Anatomy
                Reproductive System
                Uterus
                Decidua
                Medicine and Health Sciences
                Anatomy
                Reproductive System
                Uterus
                Decidua
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Connective Tissue Cells
                Stromal Cells
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Connective Tissue
                Connective Tissue Cells
                Stromal Cells
                Medicine and Health Sciences
                Anatomy
                Biological Tissue
                Connective Tissue
                Connective Tissue Cells
                Stromal Cells
                Medicine and Health Sciences
                Women's Health
                Maternal Health
                Pregnancy
                Pregnancy Complications
                Preeclampsia
                Medicine and Health Sciences
                Women's Health
                Obstetrics and Gynecology
                Pregnancy
                Pregnancy Complications
                Preeclampsia
                Biology and Life Sciences
                Developmental Biology
                Cell Differentiation
                Biology and life sciences
                Cell biology
                Signal transduction
                Cell signaling
                VEGF signaling
                Biology and Life Sciences
                Cell Biology
                Cell Motility
                Cell Migration
                Biology and Life Sciences
                Developmental Biology
                Cell Migration
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article