4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A light-up “G-quadruplex nanostring” for label-free and selective detection of miRNA via duplex-specific nuclease mediated tandem rolling circle amplification

      , , , , , ,
      Nanomedicine: Nanotechnology, Biology and Medicine
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA

          MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene-expression posttranscriptionally. MiRNA research in allergy is expanding because miRNAs are crucial regulators of gene expression and promising candidates for biomarker development. MiRNA mimics and miRNA inhibitors currently in preclinical development have shown promise as novel therapeutic agents. Multiple technological platforms have been developed for miRNA isolation, miRNA quantitation, miRNA profiling, miRNA target detection, and modulating miRNA levels in vitro and in vivo. Here we will review the major technological platforms with consideration given for the advantages and disadvantages of each platform.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isothermal Amplification of Nucleic Acids.

            Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A custom microarray platform for analysis of microRNA gene expression.

              MicroRNAs are short, noncoding RNA transcripts that post-transcriptionally regulate gene expression. Several hundred microRNA genes have been identified in Caenorhabditis elegans, Drosophila, plants and mammals. MicroRNAs have been linked to developmental processes in C. elegans, plants and humans and to cell growth and apoptosis in Drosophila. A major impediment in the study of microRNA function is the lack of quantitative expression profiling methods. To close this technological gap, we have designed dual-channel microarrays that monitor expression levels of 124 mammalian microRNAs. Using these tools, we observed distinct patterns of expression among adult mouse tissues and embryonic stem cells. Expression profiles of staged embryos demonstrate temporal regulation of a large class of microRNAs, including members of the let-7 family. This microarray technology enables comprehensive investigation of microRNA expression, and furthers our understanding of this class of recently discovered noncoding RNAs.
                Bookmark

                Author and article information

                Journal
                Nanomedicine: Nanotechnology, Biology and Medicine
                Nanomedicine: Nanotechnology, Biology and Medicine
                Elsevier BV
                15499634
                February 2021
                February 2021
                : 32
                : 102339
                Article
                10.1016/j.nano.2020.102339
                431a850b-4d4c-4993-965f-e533c67a03c9
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article