15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Female mate choice is a reproductive isolating barrier in Heliconius butterflies : XXXX

      1 , 2 , 1 , 3
      Ethology
      Wiley

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">In sexually reproducing organisms, speciation involves the evolution of reproductive isolating mechanisms that decrease gene flow. Premating reproductive isolation, often the result of mate choice, is a major obstacle to gene flow between species because it acts earlier in the life cycle than other isolating barriers. While female choice is often considered the default mode in animal species, research in the butterfly genus <i>Heliconius</i>, a frequent subject of speciation studies, has focused on male mate choice. We studied mate choice by <i>H. cydno</i> females by pairing them with either conspecific males or males of the closely related species <i>H. pachinus </i>. Significantly more intraspecific trials than interspecific trials resulted in mating. Because male courtship rates did not differ between the species when we excluded males that never courted, we attribute this difference to female choice. Females also performed more acceptance behaviours towards conspecific males. Premating isolation between these two species thus entails both male and female mate choice, and female choice may be an important factor in the origin of <i>Heliconius</i> species. </p>

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Hybridization and speciation.

          Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near-instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky-Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock-on effects on speciation both within and outside regions of hybridization. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reproductive isolation caused by colour pattern mimicry.

            Speciation is facilitated if ecological adaptation directly causes assortative mating, but few natural examples are known. Here we show that a shift in colour pattern mimicry was crucial in the origin of two butterfly species. The sister species Heliconius melpomene and Heliconius cydno recently diverged to mimic different model taxa, and our experiments show that their mimetic coloration is also important in choosing mates. Assortative mating between the sister species means that hybridization is rare in nature, and the few hybrids that are produced are non-mimetic, poorly adapted intermediates. Thus, the mimetic shift has caused both pre-mating and post-mating isolation. In addition, individuals from a population of H. melpomene allopatric to H. cydno court and mate with H. cydno more readily than those from a sympatric population. This suggests that assortative mating has been enhanced in sympatry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The diversification of Heliconius butterflies: what have we learned in 150 years?

              Research into Heliconius butterflies has made a significant contribution to evolutionary biology. Here, we review our understanding of the diversification of these butterflies, covering recent advances and a vast foundation of earlier work. Whereas no single group of organisms can be sufficient for understanding life's diversity, after years of intensive study, research into Heliconius has addressed a wide variety of evolutionary questions. We first discuss evidence for widespread gene flow between Heliconius species and what this reveals about the nature of species. We then address the evolution and diversity of warning patterns, both as the target of selection and with respect to their underlying genetic basis. The identification of major genes involved in mimetic shifts, and homology at these loci between distantly related taxa, has revealed a surprising predictability in the genetic basis of evolution. In the final sections, we consider the evolution of warning patterns, and Heliconius diversity more generally, within a broader context of ecological and sexual selection. We consider how different traits and modes of selection can interact and influence the evolution of reproductive isolation.
                Bookmark

                Author and article information

                Journal
                Ethology
                Ethology
                Wiley
                01791613
                December 2018
                December 2018
                November 14 2018
                : 124
                : 12
                : 862-869
                Affiliations
                [1 ]Committee on Evolutionary Biology; University of Chicago; Chicago Illinois
                [2 ]Smithsonian Tropical Research Institute; Gamboa Panama
                [3 ]Department of Ecology and Evolution; University of Chicago; Chicago Illinois
                Article
                10.1111/eth.12818
                6475913
                31024190
                4309336a-0900-4988-a8ea-c6f5572d1ea5
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article