24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Colorimetric LAMP microfluidic chip for detecting three allergens: peanut, sesame and soybean

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Food allergies can greatly harm people’s health, and therefore detecting allergens in foods is extremely important. By integrating loop-mediated isothermal amplification (LAMP) with a microfluidic chip, we have developed a method for detecting the allergen genes of peanut ( Arachis hypogaea), sesame ( Sesamum indicum), and soybean ( Glycine max) using a colorimetric method suitable for the naked eye, known as the colorimetric LAMP microfluidic chip. In the presence of peanut, sesame, or soybean in the samples, the corresponding reaction well of the microfluidic chip will appear pink, or otherwise remain light brown. This method of detection is specific and can easily distinguish these three allergens from others in foods. The detection limit for peanut, sesame and soybean allergens was 0.4 ng/μL using the LAMP-microfluidic chip. The accuracy of this novel and rapid method was validated using allergenic foods obtained commercially and was comparable with that of the typical TaqMan real-time PCR method.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Microfluidic platforms for lab-on-a-chip applications.

          We review microfluidic platforms that enable the miniaturization, integration and automation of biochemical assays. Nowadays nearly an unmanageable variety of alternative approaches exists that can do this in principle. Here we focus on those kinds of platforms only that allow performance of a set of microfluidic functions--defined as microfluidic unit operations-which can be easily combined within a well defined and consistent fabrication technology to implement application specific biochemical assays in an easy, flexible and ideally monolithically way. The microfluidic platforms discussed in the following are capillary test strips, also known as lateral flow assays, the "microfluidic large scale integration" approach, centrifugal microfluidics, the electrokinetic platform, pressure driven droplet based microfluidics, electrowetting based microfluidics, SAW driven microfluidics and, last but not least, "free scalable non-contact dispensing". The microfluidic unit operations discussed within those platforms are fluid transport, metering, mixing, switching, incubation, separation, droplet formation, droplet splitting, nL and pL dispensing, and detection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics.

            Effective pathogen detection is an essential prerequisite for the prevention and treatment of infectious diseases. Despite recent advances in biosensors, infectious diseases remain a major cause of illnesses and mortality throughout the world. For instance in developing countries, infectious diseases account for over half of the mortality rate. Pathogen detection platforms provide a fundamental tool in different fields including clinical diagnostics, pathology, drug discovery, clinical research, disease outbreaks, and food safety. Microfluidic lab-on-a-chip (LOC) devices offer many advantages for pathogen detection such as miniaturization, small sample volume, portability, rapid detection time and point-of-care diagnosis. This review paper outlines recent microfluidic based devices and LOC design strategies for pathogen detection with the main focus on the integration of different techniques that led to the development of sample-to-result devices. Several examples of recently developed devices are presented along with respective advantages and limitations of each design. Progresses made in biomarkers, sample preparation, amplification and fluid handling techniques using microfluidic platforms are also covered and strategies for multiplexing and high-throughput analysis, as well as point-of-care diagnosis, are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rolling Circle DNA Synthesis: Small Circular Oligonucleotides as Efficient Templates for DNA Polymerases.

              We report that small, single-stranded circular DNA oligonucleotides 26 to 74 nucleotides (nt) in size can behave as catalytic templates for DNA synthesis by several DNA polymerase enzymes. The DNA products are repeating end-to-end multimeric copies of the synthetic circular DNAs, and range from 1 000 to > 12 000 nucleotides in length. Several aspects of this reaction are unusual: first, the synthesis proceeds efficiently despite the curvature and small size of the circles, some of which have diameters significantly smaller than that of the enzyme itself. Second, the synthesis can proceed hundreds of times around the circle, while rolling replication of larger circular plasmid DNAs requires other proteins for processive synthesis. Finally, the synthesis scheme produces multiple copies of the template without the requirement for either heating or cooling cycles and requires less than stoichiometric amounts of primer, unlike other DNA synthesis methods. We report on the scope of this reaction, and demonstrate that the multimeric products can be cleaved enzymatically to short, sequence-defined oligodeoxynucleotides. This new approach to DNA synthesis may be a practical way to produce useful repeating DNAs, and combined with DNA cleavage strategies, it may represent a useful enzymatic approach to short, sequence-defined oligodeoxynucleotides.
                Bookmark

                Author and article information

                Contributors
                fxech@fudan.edu.cn
                chenqincc@staff.shu.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                6 June 2018
                6 June 2018
                2018
                : 8
                : 8682
                Affiliations
                [1 ]ISNI 0000 0001 2323 5732, GRID grid.39436.3b, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, , Shanghai University, ; Shanghai, 200444 P.R. China
                [2 ]ISNI 0000 0001 0125 2443, GRID grid.8547.e, Department of Chemistry and Institutes of Biomedical Sciences, , Fudan University, ; Shanghai, 200433 P.R. China
                [3 ]Shanghai Suchuang Diagnostics Co., Ltd., Shanghai, 201318 P.R. China
                Article
                26982
                10.1038/s41598-018-26982-5
                5989197
                29875429
                4302b101-8093-446e-afd4-126eff80092b
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 January 2018
                : 26 April 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article