18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel Negative Pressure Helmet Reduces Aerosolized Particles in a Simulated Prehospital Setting

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Objective:

          The coronavirus disease 2019 (COVID-19) pandemic has created challenges in maintaining the safety of prehospital providers caring for patients. Reports have shown increased rates of Emergency Medical Services (EMS) provider infection with COVID-19 after patient care exposure, especially while utilizing aerosol-generating procedures (AGPs). Given the increased risk and rising call volumes for AGP-necessitating complaints, development of novel devices for the protection of EMS clinicians is of great importance.

          Drawn from the concept of the powered air purifying respirator (PAPR), the AerosolVE helmet creates a personal negative pressure space to contain aerosolized infectious particles produced by patients, making the cabin of an EMS vehicle safer for providers. The helmet was developed initially for use in hospitals and could be of significant use in the prehospital setting. The objective of this study was to determine the efficacy and safety of the helmet in mitigating simulated infectious particle spread in varied EMS transport platforms during AGP utilization.

          Methods:

          Fifteen healthy volunteers were enrolled and distributed amongst three EMS vehicles: a ground ambulance, a medical helicopter, and a medical jet. Sodium chloride particles were used to simulate infectious particles, and particle counts were obtained in numerous locations close to the helmet and around the patient compartment. Counts near the helmet were compared to ambient air with and without use of AGPs (non-rebreather mask [NRB], continuous positive airway pressure mask [CPAP], and high-flow nasal cannula [HFNC]).

          Results:

          Without the helmet fan on, the particle generator alone and with all AGPs produced particle counts inside the helmet significantly higher than ambient particle counts. With the fan on, there was no significant difference in particle counts around the helmet compared to baseline ambient particle counts. Particle counts at the filter exit averaged less than one despite markedly higher particle counts inside the helmet.

          Conclusion:

          Given the risk to EMS providers by communicable respiratory diseases, development of devices to improve safety while still enabling use of respiratory therapies is of paramount importance. The AerosolVE helmet demonstrated efficacy in creating a negative pressure environment and provided significant filtration of simulated respiratory droplets, thus making the confined space of transport vehicles potentially safer for EMS personnel.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SARS-CoV-2 (COVID-19) by the numbers

          The COVID-19 pandemic is a harsh reminder of the fact that, whether in a single human host or a wave of infection across continents, viral dynamics is often a story about the numbers. In this article we provide a one-stop, curated graphical source for the key numbers (based mostly on the peer-reviewed literature) about the SARS-CoV-2 virus that is responsible for the pandemic. The discussion is framed around two broad themes: i) the biology of the virus itself; ii) the characteristics of the infection of a single human host.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Transmission of COVID-19 to Health Care Personnel During Exposures to a Hospitalized Patient — Solano County, California, February 2020

            On February 26, 2020, the first U.S. case of community-acquired coronavirus disease 2019 (COVID-19) was confirmed in a patient hospitalized in Solano County, California ( 1 ). The patient was initially evaluated at hospital A on February 15; at that time, COVID-19 was not suspected, as the patient denied travel or contact with symptomatic persons. During a 4-day hospitalization, the patient was managed with standard precautions and underwent multiple aerosol-generating procedures (AGPs), including nebulizer treatments, bilevel positive airway pressure (BiPAP) ventilation, endotracheal intubation, and bronchoscopy. Several days after the patient’s transfer to hospital B, a real-time reverse transcription–polymerase chain reaction (real-time RT-PCR) test for SARS-CoV-2 returned positive. Among 121 hospital A health care personnel (HCP) who were exposed to the patient, 43 (35.5%) developed symptoms during the 14 days after exposure and were tested for SARS-CoV-2; three had positive test results and were among the first known cases of probable occupational transmission of SARS-CoV-2 to HCP in the United States. Little is known about specific risk factors for SARS-CoV-2 transmission in health care settings. To better characterize and compare exposures among HCP who did and did not develop COVID-19, standardized interviews were conducted with 37 hospital A HCP who were tested for SARS-CoV-2, including the three who had positive test results. Performing physical examinations and exposure to the patient during nebulizer treatments were more common among HCP with laboratory-confirmed COVID-19 than among those without COVID-19; HCP with COVID-19 also had exposures of longer duration to the patient. Because transmission-based precautions were not in use, no HCP wore personal protective equipment (PPE) recommended for COVID-19 patient care during contact with the index patient. Health care facilities should emphasize early recognition and isolation of patients with possible COVID-19 and use of recommended PPE to minimize unprotected, high-risk HCP exposures and protect the health care workforce. HCP with potential exposures to the index patient at hospital A were identified through medical record review. Hospital and health department staff members contacted HCP for initial risk stratification and classified HCP into categories of high, medium, low, and no identifiable risk, according to CDC guidance.* HCP at high or medium risk were furloughed and actively monitored; those at low risk were asked to self-monitor for symptoms for 14 days from their last exposure. † Nasopharyngeal and oropharyngeal specimens were collected once from HCP who developed symptoms consistent with COVID-19 § during their 14-day monitoring period, and specimens were tested for SARS-CoV-2 using real-time RT-PCR at the California Department of Public Health. Serologic testing and testing for other respiratory viruses was not performed. The investigation team, including hospital, local and state health departments, and CDC staff members, attempted to contact all 43 tested HCP by phone to conducted interviews regarding index patient exposures using a standardized exposure assessment tool. Two-sided p-values were calculated using Fisher’s exact test for categorical variables and Wilcoxon rank-sum test for continuous variables; p-values 60 1/3 (33) 3/34 (9) Median (IQR) total estimated time in patient room, mins 120 (120–420) 25 (10–50) 0.06 Median (IQR) total estimated time in patient room during AGPs, mins¶ 95 (0–160) 0 (0–3) 0.13 Came within 6 ft of index patient 3/3 (100) 30/34 (91) 1.00 Reported direct skin-to-skin contact with index patient 0/3 (0) 8/34 (24) 1.00 Index patient either masked or on closed-system ventilator when contact occurred Always 0/3 (0) 7/34 (23) 0.58 Sometimes 2/3 (67) 10/34 (32) Never 1/3 (33) 14/34 (45) Abbreviations: AGPs = aerosol-generating procedures; COVID-19 = coronavirus disease 2019; IQR = interquartile range. * Versus sometimes or never. † No HCP reported use of gowns, N95 respirators, powered air-purifying respirators (PAPRs), or eye protection during any patient care activities for index patient. § Denominators for PPE use during AGPs are numbers of HCP exposed to AGPs. ¶ This was estimated by asking each interviewed staff member to report the number and average duration of each exposure to the patient during AGPs. Total estimated duration for each AGP was calculated by multiplying the number of exposures by average duration of exposure during that AGP. Total estimated exposure time for all AGPs was calculated by adding total duration of exposures across all AGPs. Discussion HCP are at high risk for acquiring infections during novel disease outbreaks, especially before transmission dynamics are fully characterized. The cases reported here are among the first known reports of occupational transmission of SARS-CoV-2 to HCP in the United States, although more cases have since been identified ( 2 ). Little is known to date about SARS-CoV-2 transmission in health care settings. Reports from Illinois, Singapore, and Hong Kong have described cohorts of HCP exposed to patients with COVID-19 without any documented HCP transmission ( 3 – 5 ); most HCP exposures in these cases occurred with patients while HCP were using contact, droplet, or airborne precautions. §§ As community transmission of COVID-19 increases, determining whether HCP infections are acquired in the workplace or in the community becomes more difficult. This investigation presented a unique opportunity to analyze exposures associated with COVID-19 transmission in a health care setting without recognized community exposures. Describing exposures among HCP who did and did not develop COVID-19 can inform guidance on how to best protect HCP. Among a cohort of 121 exposed HCP, 43 of whom were symptomatic and tested, three developed confirmed COVID-19, despite multiple unprotected exposures among HCP. HCP who developed COVID-19 had longer durations of exposure to the index patient; exposures during nebulizer treatments and BiPAP were also more common among HCP who developed COVID-19. These findings underscore the heightened COVID-19 transmission risk associated with prolonged, unprotected patient contact and the importance of ensuring that HCP exposed to patients with confirmed or suspected COVID-19 are protected. CDC recommends use of N95 or higher-level respirators and airborne infection isolation rooms when performing AGPs for patients with suspected or confirmed COVID-19; for care that does not include AGPs, CDC recommends use of respirators where available. ¶¶ In California, the Division of Occupational Safety and Health Aerosol Transmissible Diseases standard requires respirators for HCP exposed to potentially airborne pathogens such as SARS-CoV-2; PAPRs are required during AGPs.*** Studies of other respiratory pathogens have documented increased transmission risk associated with AGPs, many of which can generate large droplets as well as small particle aerosols ( 6 ). A recent study found that SARS-CoV-2 generated through nebulization can remain viable in aerosols <5 μm for hours, suggesting that SARS-CoV-2 could be transmitted at least in part through small particle aerosols ( 7 ). Among the three HCP with COVID-19 at hospital A, two had index patient exposures during AGPs; one did not and reported wearing a facemask but no eye protection for most of the contact time with the patient. Given multiple unprotected exposures among HCP in this investigation, separating risks associated with specific procedures from those associated with duration of exposure and lack of recommended PPE is difficult. More research to determine the risks associated with specific procedures and the protectiveness of different types of PPE, as well as the extent of short-range aerosol transmission of SARS-CoV-2, is needed. Patient source control (e.g., patient wearing a mask or connected to a closed-system ventilator during HCP exposures) might also reduce risk of SARS-CoV-2 transmission. Although the index patient was not masked or ventilated for the majority of hospital A admission, at hospital B, where the patient remained on a closed system ventilator from arrival to receiving a positive test result, none of the 146 HCP identified as exposed developed known COVID-19 infection ( 8 ). Source control strategies, such as masking of patients, visitors, and HCP, should be considered by health care facilities to reduce risk of SARS-CoV-2 transmission. This findings in this report are subject to at least three limitations. First, exposures among HCP were self-reported and are subject to recall bias. Second, the low number of cases limits the ability to detect statistically significant differences in exposures and does not allow for multivariable analyses to adjust for potential confounding. Finally, additional infections might have occurred among asymptomatic exposed HCP who were not tested, or among HCP who were tested as a result of timing and limitations of nasopharyngeal and oropharyngeal specimen testing; serologic testing was not performed. To protect HCP caring for patients with suspected or confirmed COVID-19, health care facilities should continue to follow CDC, state, and local infection control and PPE guidance. Early recognition and prompt isolation, including source control, for patients with possible infection can help minimize unprotected and high-risk HCP exposures. These measures are crucial to protect HCP and preserve the health care workforce in the face of an outbreak already straining the U.S. health care system. Summary What is already known about this topic? Health care personnel (HCP) are at heightened risk of acquiring COVID-19 infection, but limited information exists about transmission in health care settings. What is added by this report? Among 121 HCP exposed to a patient with unrecognized COVID-19, 43 became symptomatic and were tested for SARS-CoV-2, of whom three had positive test results; all three had unprotected patient contact. Exposures while performing physical examinations or during nebulizer treatments were more common among HCP with COVID-19. What are the implications for public health practice? Unprotected, prolonged patient contact, as well as certain exposures, including some aerosol-generating procedures, were associated with SARS-CoV-2 infection in HCP. Early recognition and isolation of patients with possible infection and recommended PPE use can help minimize unprotected, high-risk HCP exposures and protect the health care workforce.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Guidelines for environmental infection control in health-care facilities. Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC).

              The health-care facility environment is rarely implicated in disease transmission, except among patients who are immunocompromised. Nonetheless, inadvertent exposures to environmental pathogens (e.g., Aspergillus spp. and Legionella spp.) or airborne pathogens (e.g., Mycobacterium tuberculosis and varicella-zoster virus) can result in adverse patient outcomes and cause illness among health-care workers. Environmental infection-control strategies and engineering controls can effectively prevent these infections. The incidence of health-care--associated infections and pseudo-outbreaks can be minimized by 1) appropriate use of cleaners and disinfectants; 2) appropriate maintenance of medical equipment (e.g., automated endoscope reprocessors or hydrotherapy equipment); 3) adherence to water-quality standards for hemodialysis, and to ventilation standards for specialized care environments (e.g., airborne infection isolation rooms, protective environments, or operating rooms); and 4) prompt management of water intrusion into the facility. Routine environmental sampling is not usually advised, except for water quality determinations in hemodialysis settings and other situations where sampling is directed by epidemiologic principles, and results can be applied directly to infection-control decisions. This report reviews previous guidelines and strategies for preventing environment-associated infections in health-care facilities and offers recommendations. These include 1) evidence-based recommendations supported by studies; 2) requirements of federal agencies (e.g., Food and Drug Administration, U.S. Environmental Protection Agency, U.S. Department of Labor, Occupational Safety and Health Administration, and U.S. Department of Justice); 3) guidelines and standards from building and equipment professional organizations (e.g., American Institute of Architects, Association for the Advancement of Medical Instrumentation, and American Society of Heating, Refrigeration, and Air-Conditioning Engineers); 4) recommendations derived from scientific theory or rationale; and 5) experienced opinions based upon infection-control and engineering practices. The report also suggests a series of performance measurements as a means to evaluate infection-control efforts.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Prehospital and Disaster Medicine
                Prehosp. Disaster med.
                Cambridge University Press (CUP)
                1049-023X
                1945-1938
                February 2022
                January 31 2022
                February 2022
                : 37
                : 1
                : 33-38
                Article
                10.1017/S1049023X22000103
                35094732
                42ff2342-a210-49b4-b2e1-5270d4c28ce0
                © 2022

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article