21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Caspase-11 Mediates Neutrophil Chemotaxis and Extracellular Trap Formation During Acute Gouty Arthritis Through Alteration of Cofilin Phosphorylation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gout is characterized by attacks of arthritis with hyperuricemia and monosodium urate (MSU) crystal-induced inflammation within joints. Innate immune responses are the primary drivers for tissue destruction and inflammation in gout. MSU crystals engage the Nlrp3 inflammasome, leading to the activation of caspase-1 and production of IL-1β and IL-18 within gout-affected joints, promoting the influx of neutrophils and monocytes. Here, we show that caspase-11 −/− mice and their derived macrophages produce significantly reduced levels of gout-specific cytokines including IL-1β, TNFα, IL-6, and KC, while others like IFNγ and IL-12p70 are not altered. IL-1β induces the expression of caspase-11 in an IL-1 receptor-dependent manner in macrophages contributing to the priming of macrophages during sterile inflammation. The absence of caspase-11 reduced the ability of macrophages and neutrophils to migrate in response to exogenously injected KC in vivo. Notably, in vitro, caspase-11 −/− neutrophils displayed random migration in response to a KC gradient when compared to their WT counterparts. This phenotype was associated with altered cofilin phosphorylation. Unlike their wild-type counterparts, caspase-11 −/− neutrophils also failed to produce neutrophil extracellular traps (NETs) when treated with MSU. Together, this is the first report demonstrating that caspase-11 promotes neutrophil directional trafficking and function in an acute model of gout. Caspase-11 also governs the production of inflammasome-dependent and -independent cytokines from macrophages. Our results offer new, previously unrecognized functions for caspase-11 in macrophages and neutrophils that may apply to other neutrophil-mediated disease conditions besides gout.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages

          The interleukin-1 (IL-1) family cytokines are cytosolic proteins that exhibit inflammatory activity upon release into the extracellular space. These factors are released following various cell death processes, with pyroptosis being a common mechanism. Recently, it was recognized that phagocytes can achieve a state of hyperactivation, which is defined by their ability to secrete IL-1 while retaining viability, yet it is unclear how IL-1 can be secreted from living cells. Herein, we report that the pyroptosis regulator gasdermin D (GSDMD) was necessary for IL-1β secretion from living macrophages that have been exposed to inflammasome activators, such as bacteria and their products or host-derived oxidized lipids. Cell- and liposome-based assays demonstrated that GSDMD pores were required for IL-1β transport across an intact lipid bilayer. These findings identify a non-pyroptotic function for GSDMD, and raise the possibility that GSDMD pores represent conduits for the secretion of cytosolic cytokines under conditions of cell hyperactivation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes.

            Gasdermin-D (GsdmD) is a critical mediator of innate immune defense because its cleavage by the inflammatory caspases 1, 4, 5, and 11 yields an N-terminal p30 fragment that induces pyroptosis, a death program important for the elimination of intracellular bacteria. Precisely how GsdmD p30 triggers pyroptosis has not been established. Here we show that human GsdmD p30 forms functional pores within membranes. When liberated from the corresponding C-terminal GsdmD p20 fragment in the presence of liposomes, GsdmD p30 localized to the lipid bilayer, whereas p20 remained in the aqueous environment. Within liposomes, p30 existed as higher-order oligomers and formed ring-like structures that were visualized by negative stain electron microscopy. These structures appeared within minutes of GsdmD cleavage and released Ca(2+) from preloaded liposomes. Consistent with GsdmD p30 favoring association with membranes, p30 was only detected in the membrane-containing fraction of immortalized macrophages after caspase-11 activation by lipopolysaccharide. We found that the mouse I105N/human I104N mutation, which has been shown to prevent macrophage pyroptosis, attenuated both cell killing by p30 in a 293T transient overexpression system and membrane permeabilization in vitro, suggesting that the mutants are actually hypomorphs, but must be above certain concentration to exhibit activity. Collectively, our data suggest that GsdmD p30 kills cells by forming pores that compromise the integrity of the cell membrane.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Random versus directionally persistent cell migration.

              Directional migration is an important component of cell motility. Although the basic mechanisms of random cell movement are well characterized, no single model explains the complex regulation of directional migration. Multiple factors operate at each step of cell migration to stabilize lamellipodia and maintain directional migration. Factors such as the topography of the extracellular matrix, the cellular polarity machinery, receptor signalling, integrin trafficking, integrin co-receptors and actomyosin contraction converge on regulation of the Rho family of GTPases and the control of lamellipodial protrusions to promote directional migration.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                15 November 2019
                2019
                : 10
                : 2519
                Affiliations
                [1] 1Department of Microbial Infection and Immunity, The Ohio State University Medical Center , Columbus, OH, United States
                [2] 2Department of Rheumatology and Immunology, The Ohio State University Medical Center , Columbus, OH, United States
                [3] 3Center for Microbial Pathogenesis, Nationwide Children's Hospital , Columbus, OH, United States
                [4] 4Department of Biology and Biochemistry, Birzeit University , West Bank, Palestine
                [5] 5Department of Microbiology, Immunology and Cell Biology, West Virginia University , Morgantown, WV, United States
                [6] 6Center for Biostatistics, The Ohio State University Medical Center , Columbus, OH, United States
                [7] 7Department of Internal Medicine, The Ohio State University Medical Center , Columbus, OH, United States
                Author notes

                Edited by: Guochang Hu, University of Illinois at Chicago, United States

                Reviewed by: Izabela Galvao, Centenary Institute Australia, Australia; Markus H. Hoffmann, University of Erlangen Nuremberg, Germany

                *Correspondence: Amal O. Amer amal.amer@ 123456osumc.edu

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2019.02519
                6874099
                31803174
                42f5ff8b-e499-4eef-8e0a-eab6626e460d
                Copyright © 2019 Caution, Young, Robledo-Avila, Krause, Abu Khweek, Hamilton, Badr, Vaidya, Daily, Gosu, Anne, Eltobgy, Dakhlallah, Argwal, Estfanous, Zhang, Partida-Sanchez, Gavrilin, Jarjour and Amer.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 July 2019
                : 09 October 2019
                Page count
                Figures: 10, Tables: 0, Equations: 0, References: 89, Pages: 17, Words: 11412
                Categories
                Immunology
                Original Research

                Immunology
                caspase-11,gout,neutrophils,macrophages,netosis,il-1β,cell migration,inflammasome
                Immunology
                caspase-11, gout, neutrophils, macrophages, netosis, il-1β, cell migration, inflammasome

                Comments

                Comment on this article