13
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review of Diabetes Mellitus and Exposure to the Environmental 
Toxicant Cadmium with an Emphasis on Likely Mechanisms of Action

      research-article
      a , * , b
      Current Diabetes Reviews
      Bentham Science Publishers
      Cadmium, diabetes, GIP, insulin and leptin

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is increasing interest in how exposure to environmental substances can contribute to the onset of Type II diabetes mellitus (T2DM). Impaired insulin release is a hallmark of type I diabetes mellitus and is involved in the progression of T2DM. Both epidemiological and experimental studies show that exposure to the environmental pollutant cadmium (Cd), is associated with hyperglycemia, T2DM and reduced serum insulin. The goal of this review is to examine likely mechanisms of action of Cd-induced dysglycemia based on experimental studies in the literature and from the most recent findings in the Edwards lab. The primary focus of this review will examine how Cd may cause islet dysfunction and subsequent impaired insulin release. Recent findings in the Edwards lab indicate that Cd causes time-dependent and statistically significant changes in fasting leptin, Glucose-dependent Insulinotropic Polypeptide (GIP) and pancreas polypeptide hormone levels in a subchronic animal model of Cd-induced hyperglycemia. This review summarizes the most likely cellular mechanisms by which the ubiquitous environmental contaminant Cd disrupts glucose homeostasis. While individual cellular effects of Cd are reviewed it is likely that no one single mechanism is involved, rather multiple mechanisms exist and work synergistically resulting in islet dysfunction and ultimately dysglycemia.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Convergence of Wnt, beta-catenin, and cadherin pathways.

          W Nelson (2004)
          The specification and proper arrangements of new cell types during tissue differentiation require the coordinated regulation of gene expression and precise interactions between neighboring cells. Of the many growth factors involved in these events, Wnts are particularly interesting regulators, because a key component of their signaling pathway, beta-catenin, also functions as a component of the cadherin complex, which controls cell-cell adhesion and influences cell migration. Here, we assemble evidence of possible interrelations between Wnt and other growth factor signaling, beta-catenin functions, and cadherin-mediated adhesion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            beta-cell failure in diabetes and preservation by clinical treatment.

            There is a progressive deterioration in beta-cell function and mass in type 2 diabetics. It was found that islet function was about 50% of normal at the time of diagnosis, and a reduction in beta-cell mass of about 60% was shown at necropsy. The reduction of beta-cell mass is attributable to accelerated apoptosis. The major factors for progressive loss of beta-cell function and mass are glucotoxicity, lipotoxicity, proinflammatory cytokines, leptin, and islet cell amyloid. Impaired beta-cell function and possibly beta-cell mass appear to be reversible, particularly at early stages of the disease where the limiting threshold for reversibility of decreased beta-cell mass has probably not been passed. Among the interventions to preserve or "rejuvenate" beta-cells, short-term intensive insulin therapy of newly diagnosed type 2 diabetes will improve beta-cell function, usually leading to a temporary remission time. Another intervention is the induction of beta-cell "rest" by selective activation of ATP-sensitive K+ (K(ATP)) channels, using drugs such as diazoxide. A third type of intervention is the use of antiapoptotic drugs, such as the thiazolidinediones (TZDs), and incretin mimetics and enhancers, which have demonstrated significant clinical evidence of effects on human beta-cell function. The TZDs improve insulin secretory capacity, decrease beta-cell apoptosis, and reduce islet cell amyloid with maintenance of neogenesis. The TZDs have indirect effects on beta-cells by being insulin sensitizers. The direct effects are via peroxisome proliferator-activated receptor gamma activation in pancreatic islets, with TZDs consistently improving basal beta-cell function. These beneficial effects are sustained in some individuals with time. There are several trials on prevention of diabetes with TZDs. Incretin hormones, which are released from the gastrointestinal tract in response to nutrient ingestion to enhance glucose-dependent insulin secretion from the pancreas, aid the overall maintenance of glucose homeostasis through slowing of gastric emptying, inhibition of glucagon secretion, and control of body weight. From the two major incretins, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), only the first one or its mimetics or enhancers can be used for treatment because the diabetic beta-cell is resistant to GIP action. Because of the rapid inactivation of GLP-1 by dipeptidyl peptidase (DPP)-IV, several incretin analogs were developed: GLP-1 receptor agonists (incretin mimetics) exenatide (synthetic exendin-4) and liraglutide, by conjugation of GLP-1 to circulating albumin. The acute effect of GLP-1 and GLP-1 receptor agonists on beta-cells is stimulation of glucose-dependent insulin release, followed by enhancement of insulin biosynthesis and stimulation of insulin gene transcription. The chronic action is stimulating beta-cell proliferation, induction of islet neogenesis, and inhibition of beta-cell apoptosis, thus promoting expansion of beta-cell mass, as observed in rodent diabetes and in cultured beta-cells. Exenatide and liraglutide enhanced postprandial beta-cell function. The inhibition of the activity of the DPP-IV enzyme enhances endogenous GLP-1 action in vivo, mediated not only by GLP-1 but also by other mediators. In preclinical studies, oral active DPP-IV inhibitors (sitagliptin and vildagliptin) also promoted beta-cell proliferation, neogenesis, and inhibition of apoptosis in rodents. Meal tolerance tests showed improvement in postprandial beta-cell function. Obviously, it is difficult to estimate the protective effects of incretin mimetics and enhancers on beta-cells in humans, and there is no clinical evidence that these drugs really have protective effects on beta-cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cadmium, diabetes and chronic kidney disease.

              Recent epidemiological studies suggest a positive association between exposure to the environmental pollutant cadmium (Cd) and the incidence and severity of diabetes. In this review, we examine the literature suggesting a relationship between Cd exposure, elevated blood glucose levels, and the development of diabetes. In addition we review human and animal studies indicating that Cd potentiates or exacerbates diabetic nephropathy. We also review the various possible cellular mechanisms by which Cd may alter blood glucose levels. In addition, we present some novel findings from our own laboratories showing that Cd elevates fasting blood glucose levels in an animal model of subchronic Cd exposure before overt signs of renal dysfunction are evident. These studies also show that Cd reduces insulin levels and has direct cytotoxic effects on the pancreas. Together, these findings indicate that Cd may be a factor in the development of some types of diabetes and they raise the possibility that Cd and diabetes-related hyperglycemia may act synergistically to damage the kidney.
                Bookmark

                Author and article information

                Journal
                Curr Diabetes Rev
                Curr Diabetes Rev
                CDR
                Current Diabetes Reviews
                Bentham Science Publishers
                1573-3998
                1875-6417
                September 2016
                September 2016
                : 12
                : 3
                : 252-258
                Affiliations
                [a ]Department of Pharmacology, Midwestern University, Downers Grove, IL,USA;
                [b ]Edward Via 
College of Osteopathic Medicine, Spartanburg, SC,USA
                Author notes
                [* ]Address correspondence to this author at the Department of Pharmacology, Midwestern University, Downers Grove, IL 60515, USA; Tel/Fax: 00+1+630-515-7417, 00+1+630-515-6295;, E-mails: jedwar@ 123456midwestern.edu
                Article
                CDR-13-252
                10.2174/1573399811666150812142922
                5002940
                26264451
                42cc0e0e-8f6a-47eb-9f90-49c86a98c9a6
                © 2016 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/legalcode ), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 10 March 2015
                : 08 June 2015
                : 10 August 2015
                Categories
                Article

                Endocrinology & Diabetes
                cadmium,diabetes,gip,insulin and leptin
                Endocrinology & Diabetes
                cadmium, diabetes, gip, insulin and leptin

                Comments

                Comment on this article