1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      APOE-amyloid interaction: Therapeutic targets

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer’s disease (AD) is a devastating neurodegenerative disorder that is growing in prevalence globally. It is the only major cause of death without any effective pharmacological means to treat or slow progression. Inheritance of the ε4 allele of the Apolipoprotein (APO) E gene is the strongest genetic risk factor for late-onset AD. The interaction between APOE and amyloid β (Aβ) plays a key role in AD pathogenesis. The APOE-Aβ interaction regulates Aβ aggregation and clearance and therefore directly influences the development of amyloid plaques, congophilic amyloid angiopathy and subsequent tau related pathology. Relatively few AD therapeutic approaches have directly targeted the APOE-Aβ interaction thus far. Here we review the critical role of APOE in the pathogenesis of AD and some of the most promising therapeutic approaches that focus on the APOE-Aβ interaction.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          Neuropathological stageing of Alzheimer-related changes

          Eighty-three brains obtained at autopsy from nondemented and demented individuals were examined for extracellular amyloid deposits and intraneuronal neurofibrillary changes. The distribution pattern and packing density of amyloid deposits turned out to be of limited significance for differentiation of neuropathological stages. Neurofibrillary changes occurred in the form of neuritic plaques, neurofibrillary tangles and neuropil threads. The distribution of neuritic plaques varied widely not only within architectonic units but also from one individual to another. Neurofibrillary tangles and neuropil threads, in contrast, exhibited a characteristic distribution pattern permitting the differentiation of six stages. The first two stages were characterized by an either mild or severe alteration of the transentorhinal layer Pre-alpha (transentorhinal stages I-II). The two forms of limbic stages (stages III-IV) were marked by a conspicuous affection of layer Pre-alpha in both transentorhinal region and proper entorhinal cortex. In addition, there was mild involvement of the first Ammon's horn sector. The hallmark of the two isocortical stages (stages V-VI) was the destruction of virtually all isocortical association areas. The investigation showed that recognition of the six stages required qualitative evaluation of only a few key preparations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The amyloid hypothesis of Alzheimer's disease at 25 years

            Abstract Despite continuing debate about the amyloid β‐protein (or Aβ hypothesis, new lines of evidence from laboratories and clinics worldwide support the concept that an imbalance between production and clearance of Aβ42 and related Aβ peptides is a very early, often initiating factor in Alzheimer's disease (AD). Confirmation that presenilin is the catalytic site of γ‐secretase has provided a linchpin: all dominant mutations causing early‐onset AD occur either in the substrate (amyloid precursor protein, APP) or the protease (presenilin) of the reaction that generates Aβ. Duplication of the wild‐type APP gene in Down's syndrome leads to Aβ deposits in the teens, followed by microgliosis, astrocytosis, and neurofibrillary tangles typical of AD. Apolipoprotein E4, which predisposes to AD in > 40% of cases, has been found to impair Aβ clearance from the brain. Soluble oligomers of Aβ42 isolated from AD patients' brains can decrease synapse number, inhibit long‐term potentiation, and enhance long‐term synaptic depression in rodent hippocampus, and injecting them into healthy rats impairs memory. The human oligomers also induce hyperphosphorylation of tau at AD‐relevant epitopes and cause neuritic dystrophy in cultured neurons. Crossing human APP with human tau transgenic mice enhances tau‐positive neurotoxicity. In humans, new studies show that low cerebrospinal fluid (CSF) Aβ42 and amyloid‐PET positivity precede other AD manifestations by many years. Most importantly, recent trials of three different Aβ antibodies (solanezumab, crenezumab, and aducanumab) have suggested a slowing of cognitive decline in post hoc analyses of mild AD subjects. Although many factors contribute to AD pathogenesis, Aβ dyshomeostasis has emerged as the most extensively validated and compelling therapeutic target.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families.

              The apolipoprotein E type 4 allele (APOE-epsilon 4) is genetically associated with the common late onset familial and sporadic forms of Alzheimer's disease (AD). Risk for AD increased from 20% to 90% and mean age at onset decreased from 84 to 68 years with increasing number of APOE-epsilon 4 alleles in 42 families with late onset AD. Thus APOE-epsilon 4 gene dose is a major risk factor for late onset AD and, in these families, homozygosity for APOE-epsilon 4 was virtually sufficient to cause AD by age 80.
                Bookmark

                Author and article information

                Journal
                9500169
                20475
                Neurobiol Dis
                Neurobiol. Dis.
                Neurobiology of disease
                0969-9961
                1095-953X
                18 February 2020
                04 February 2020
                May 2020
                01 May 2021
                : 138
                : 104784
                Affiliations
                [a ]Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, Science Building, Rm 1017, 435 East 30 th Street, New York, NY 10016, USA
                [b ]Brain & Mind Centre and Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
                Author notes
                [* ]Corresponding author. Thomas.wisniewski@ 123456nyulangone.org (T. Wisniewski).
                Article
                NIHMS1562308
                10.1016/j.nbd.2020.104784
                7118587
                32027932
                42bb0428-6109-42c6-855f-4a41e45f062c

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/BY-NC-ND/4.0/).

                History
                Categories
                Article

                Neurosciences
                apolipoprotein e,immunomodulation,oligomers,early onset ad,therapy,peptoids,pathological chaperone,beta amyloid,interaction

                Comments

                Comment on this article