8
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Epidemiology and Health Impacts of Neuroendocrine Tumors

      Submit here before August 30, 2024

      About Neuroendocrinology: 3.2 Impact Factor I 8.3 CiteScore I 1.009 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Melatonin Controls Seasonal Breeding by a Network of Hypothalamic Targets

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In seasonal species, the photoperiod (i.e. day length) tightly regulates reproduction to ensure that birth occurs at the most favourable time of year. In mammals, a distinct photoneuroendocrine circuit controls this process via the pineal hormone melatonin. This hormone is responsible for the seasonal timing of reproduction, but the anatomical substrates and the cellular mechanisms through which melatonin modulates seasonal functions remain imprecise. Recently, several genes have been identified as being regulated by the photoperiod in the brain of seasonal mammals. These genes are thought to play active roles in the regulation of seasonal biology, notably for the adjustment of reproduction and body weight. Here, we briefly review findings associated with the control of seasonal breeding and describe recent data ascribing photoperiodic roles to type 2 and type 3 deiodinases, to the Kiss1/GPR54 system and to the RFamide-related peptides.Interestingly, these systems involve different hypothalamic nuclei, suggesting that several brain loci may be crucial for melatonin to regulate reproduction, and thus represent key starting points to identify the long-sought-after mode and site(s) of action of melatonin. Such findings raise great hopes for the future and could herald a new era of research in the field of seasonal biology.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54.

          We have recently described a molecular gatekeeper of the hypothalamic-pituitary-gonadal axis with the observation that G protein-coupled receptor 54 (GPR54) is required in mice and men for the pubertal onset of pulsatile luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion to occur. In the present study, we investigate the possible central mode of action of GPR54 and kisspeptin ligand. First, we show that GPR54 transcripts are colocalized with gonadotropin-releasing hormone (GnRH) neurons in the mouse hypothalamus, suggesting that kisspeptin, the GPR54 ligand, may act directly on these neurons. Next, we show that GnRH neurons seem anatomically normal in gpr54-/- mice, and that they show projections to the median eminence, which demonstrates that the hypogonadism in gpr54-/- mice is not due to an abnormal migration of GnRH neurons (as occurs with KAL1 mutations), but that it is more likely due to a lack of GnRH release or absence of GnRH neuron stimulation. We also show that levels of kisspeptin injected i.p., which stimulate robust LH and FSH release in wild-type mice, have no effect in gpr54-/- mice, and therefore that kisspeptin acts directly and uniquely by means of GPR54 signaling for this function. Finally, we demonstrate by direct measurement, that the central administration of kisspeptin intracerebroventricularly in sheep produces a dramatic release of GnRH into the cerebrospinal fluid, with a parallel rise in serum LH, demonstrating that a key action of kisspeptin on the hypothalamo-pituitary-gonadal axis occurs directly at the level of GnRH release. The localization and GnRH release effects of kisspeptin thus define GPR54 as a major control point in the reproductive axis and suggest kisspeptin to be a neurohormonal effector.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of Kiss1 gene expression in the brain of the female mouse.

            The Kiss1 gene encodes a family of neuropeptides called kisspeptins, which activate the receptor G protein-coupled receptor-54 and play a role in the neuroendocrine regulation of GnRH secretion. We examined whether estradiol (E2) regulates KiSS-1 in the forebrain of the female mouse by comparing KiSS-1 mRNA expression among groups of ovary-intact (diestrus), ovariectomized (OVX), and OVX plus E2-treated mice. In the arcuate nucleus (Arc), KiSS-1 expression increased after ovariectomy and decreased with E2 treatment. Conversely, in the anteroventral periventricular nucleus (AVPV), KiSS-1 expression was reduced after ovariectomy and increased with E2 treatment. To determine whether the effects of E2 on KiSS-1 are mediated through estrogen receptor (ER)alpha or ERbeta, we evaluated the effects of E2 in OVX mice that lacked functional ERalpha or ERbeta. In OVX mice that lacked functional ERalpha, KiSS-1 mRNA did not respond to E2 in either the Arc or AVPV, suggesting that ERalpha is essential for mediating the inhibitory and stimulatory effects of E2. In contrast, KiSS-1 mRNA in OVX mice that lacked functional ERbeta responded to E2 exactly as wild-type animals. Double-label in situ hybridization revealed that virtually all KiSS-1-expressing neurons in the Arc and AVPV coexpress ERalpha, suggesting that the effects of E2 are mediated directly through KiSS-1 neurons. We conclude that KiSS-1 neurons in the Arc, which are inhibited by E2, may play a role in the negative feedback regulation of GnRH secretion, whereas KiSS-1 neurons in the AVPV, which are stimulated by E2, may participate in the positive feedback regulation of GnRH secretion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A role for kisspeptins in the regulation of gonadotropin secretion in the mouse.

              Kisspeptins are products of the KiSS-1 gene, which bind to a G protein-coupled receptor known as GPR54. Mutations or targeted disruptions in the GPR54 gene cause hypogonadotropic hypogonadism in humans and mice, suggesting that kisspeptin signaling may be important for the regulation of gonadotropin secretion. To examine the effects of kisspeptin-54 (metastin) and kisspeptin-10 (the biologically active C-terminal decapeptide) on gonadotropin secretion in the mouse, we administered the kisspeptins directly into the lateral cerebral ventricle of the brain and demonstrated that both peptides stimulate LH secretion. Further characterization of kisspeptin-54 demonstrated that it stimulated both LH and FSH secretion, at doses as low as 1 fmol; moreover, this effect was shown to be blocked by pretreatment with acyline, a potent GnRH antagonist. To learn more about the functional anatomy of kisspeptins, we mapped the distribution of KiSS-1 mRNA in the hypothalamus. We observed that KiSS-1 mRNA is expressed in areas of the hypothalamus implicated in the neuroendocrine regulation of gonadotropin secretion, including the anteroventral periventricular nucleus, the periventricular nucleus, and the arcuate nucleus. We conclude that kisspeptin-GPR54 signaling may be part of the hypothalamic circuitry that governs the hypothalamic secretion of GnRH.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2009
                July 2009
                15 May 2009
                : 90
                : 1
                : 1-14
                Affiliations
                aDepartment of Translational Neurobiology, Neurosearch A/S, Ballerup, Denmark; bInstitut des Neurosciences Cellulaires et Intégratives, Département de Neurobiologie des Rythmes, UMR-7168/LC2 CNRS, IFR des Neurosciences, Université Louis-Pasteur, Strasbourg, France
                Article
                219588 Neuroendocrinology 2009;90:1–14
                10.1159/000219588
                19451698
                429b6265-5658-438e-8cdf-6941935bb69e
                © 2009 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 10 July 2008
                : 30 December 2008
                Page count
                Figures: 3, References: 149, Pages: 14
                Categories
                At the Cutting Edge

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                RFamide peptides,RFamide-related peptides,Melatonin,Season,Reproduction,<italic>Kiss1</italic> gene,<italic>Dio2</italic> gene,Photoperiod,Hamster

                Comments

                Comment on this article