1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of Glycerol on Methanol Fuel Characteristics and Engine Combustion Performance

      , , , , , , , ,
      Energies
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methanol derived from solar energy is a carbon-neutral alternative fuel for engines. The low viscosity of methanol is one of the problems that restrict its direct compression ignition application in engines. Glycerol is a renewable resource derived from biomass, and its viscosity is more than 1700 times that of methanol. In this study, glycerol was mixed with methanol in different volume fractions (1–50%), and a methanol-glycerol mixture with similar viscosity to diesel was prepared. Then, the particle size, electrical conductivity, viscosity, swelling and corrosion characteristics of the mixed fuel were measured. Finally, the combustion and emission tests of methanol-glycerol mixed fuel were carried out on a heavy-duty multi-cylinder diesel engine. The results show that glycerol can effectively adjust the viscosity of the mixed fuel. The viscosity of the mixed fuel can reach 3.19 mm2/s at 20 °C when blended with 30% glycerol by volume, which meets the requirements of the national standard for diesel fuel. The addition of glycerol can alleviate the corrosion of methanol to the polymer. The test of the mixed fuel in the direct compression ignition engine shows that the thermal efficiency of methanol mixed with 5% glycerol was further improved than that of pure methanol, both of which were significantly higher than the thermal efficiency of diesel compression ignition engines. Methanol and 5% glycerol by volume blends can reduce soot and nitrogen oxide emissions while maintaining low HC and CO emissions. Therefore, proper blending of glycerol in methanol fuel can optimize the fuel properties of methanol and achieve higher thermal efficiency and lower pollutant emissions than pure methanol direct compression ignition.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recycling of carbon dioxide to methanol and derived products - closing the loop.

            Starting with coal, followed by petroleum oil and natural gas, the utilization of fossil fuels has allowed the fast and unprecedented development of human society. However, the burning of these resources in ever increasing pace is accompanied by large amounts of anthropogenic CO2 emissions, which are outpacing the natural carbon cycle, causing adverse global environmental changes, the full extent of which is still unclear. Even through fossil fuels are still abundant, they are nevertheless limited and will, in time, be depleted. Chemical recycling of CO2 to renewable fuels and materials, primarily methanol, offers a powerful alternative to tackle both issues, that is, global climate change and fossil fuel depletion. The energy needed for the reduction of CO2 can come from any renewable energy source such as solar and wind. Methanol, the simplest C1 liquid product that can be easily obtained from any carbon source, including biomass and CO2, has been proposed as a key component of such an anthropogenic carbon cycle in the framework of a "Methanol Economy". Methanol itself is an excellent fuel for internal combustion engines, fuel cells, stoves, etc. It's dehydration product, dimethyl ether, is a diesel fuel and liquefied petroleum gas (LPG) substitute. Furthermore, methanol can be transformed to ethylene, propylene and most of the petrochemical products currently obtained from fossil fuels. The conversion of CO2 to methanol is discussed in detail in this review.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Direct Catalytic Oxidation of Methane to Methanol-A Critical Assessment

                Bookmark

                Author and article information

                Contributors
                Journal
                ENERGA
                Energies
                Energies
                MDPI AG
                1996-1073
                September 2022
                September 08 2022
                : 15
                : 18
                : 6585
                Article
                10.3390/en15186585
                4289b346-f9f3-4b66-9d5e-82fed2c81842
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article