There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
Over the last decade, the way to monitor hemodynamics at the bedside has evolved considerably
in the intensive care unit as well as in the operating room. The most important evolution
has been the declining use of the pulmonary artery catheter along with the growing
use of echocardiography and of continuous, real-time, minimally or totally non-invasive
hemodynamic monitoring techniques. This article, which is the result of an agreement
between authors belonging to the Cardiovascular Dynamics Section of the European Society
of Intensive Care Medicine, discusses the advantages and limits of using such techniques
with an emphasis on their respective place in the hemodynamic management of critically
ill patients with hemodynamic instability.
To better define the incidence of sepsis and the characteristics of critically ill patients in European intensive care units. Cohort, multiple-center, observational study. One hundred and ninety-eight intensive care units in 24 European countries. All new adult admissions to a participating intensive care unit between May 1 and 15, 2002. None. Demographic data, comorbid diseases, and clinical and laboratory data were collected prospectively. Patients were followed up until death, until hospital discharge, or for 60 days. Of 3,147 adult patients, with a median age of 64 yrs, 1,177 (37.4%) had sepsis; 777 (24.7%) of these patients had sepsis on admission. In patients with sepsis, the lung was the most common site of infection (68%), followed by the abdomen (22%). Cultures were positive in 60% of the patients with sepsis. The most common organisms were Staphylococcus aureus (30%, including 14% methicillin-resistant), Pseudomonas species (14%), and Escherichia coli (13%). Pseudomonas species was the only microorganism independently associated with increased mortality rates. Patients with sepsis had more severe organ dysfunction, longer intensive care unit and hospital lengths of stay, and higher mortality rate than patients without sepsis. In patients with sepsis, age, positive fluid balance, septic shock, cancer, and medical admission were the important prognostic variables for intensive care unit mortality. There was considerable variation between countries, with a strong correlation between the frequency of sepsis and the intensive care unit mortality rates in each of these countries. This large pan-European study documents the high frequency of sepsis in critically ill patients and shows a close relationship between the proportion of patients with sepsis and the intensive care unit mortality in the various countries. In addition to age, a positive fluid balance was among the strongest prognostic factors for death. Patients with intensive care unit acquired sepsis have a worse outcome despite similar severity scores on intensive care unit admission.
Objective Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock. Methods The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575–590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit? (2) Should we monitor preload and fluid responsiveness in shock? (3) How and when should we monitor stroke volume or cardiac output in shock? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock? Four types of statements were used: definition, recommendation, best practice and statement of fact. Results Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring. Conclusions This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock.
In mechanically ventilated patients with acute circulatory failure related to sepsis, we investigated whether the respiratory changes in arterial pressure could be related to the effects of volume expansion (VE) on cardiac index (CI). Forty patients instrumented with indwelling systemic and pulmonary artery catheters were studied before and after VE. Maximal and minimal values of pulse pressure (Pp(max) and Pp(min)) and systolic pressure (Ps(max) and Ps(min)) were determined over one respiratory cycle. The respiratory changes in pulse pressure (DeltaPp) were calculated as the difference between Pp(max) and Pp(min) divided by the mean of the two values and were expressed as a percentage. The respiratory changes in systolic pressure (DeltaPs) were calculated using a similar formula. The VE-induced increase in CI was >/= 15% in 16 patients (responders) and < 15% in 24 patients (nonresponders). Before VE, DeltaPp (24 +/- 9 versus 7 +/- 3%, p < 0.001) and DeltaPs (15 +/- 5 versus 6 +/- 3%, p < 0.001) were higher in responders than in nonresponders. Receiver operating characteristic (ROC) curves analysis showed that DeltaPp was a more accurate indicator of fluid responsiveness than DeltaPs. Before VE, a DeltaPp value of 13% allowed discrimination between responders and nonresponders with a sensitivity of 94% and a specificity of 96%. VE-induced changes in CI closely correlated with DeltaPp before volume expansion (r(2) = 0. 85, p < 0.001). VE decreased DeltaPp from 14 +/- 10 to 7 +/- 5% (p < 0.001) and VE-induced changes in DeltaPp correlated with VE-induced changes in CI (r(2) = 0.72, p < 0.001). It was concluded that in mechanically ventilated patients with acute circulatory failure related to sepsis, analysis of DeltaPp is a simple method for predicting and assessing the hemodynamic effects of VE, and that DeltaPp is a more reliable indicator of fluid responsiveness than DeltaPs.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.