3
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Occupational Exposure to Heat Stress and Physiological Responses of Workers in the Rolling Industry

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Objective:

          Many indices are used to assess occupational heat stress at the work environments. The aim of this study was to evaluate heat stress using Wet Bulb Globe Temperature (WBGT) index and Discomfort Index (DI), and by measuring physiological responses in the workers of the rolling industry and comparing the appropriateness of these indices for measuring heat stress.

          Methods:

          This cross-sectional study was carried out on 90 healthy workers of a rolling industry in eastern Tehran in 2017. Physiological parameters of core body temperature (T cr) and Heart Rate (HR) were measured during the working shift according to ISO9886 standard. At the same time, environmental variables such as the natural wet temperature (T nw), dry temperature (T d) and globe temperature (T g) were measured and recorded at the workstations. Then, the DI and the WBGT indices were calculated using the related formulae. Data were analyzed using SPSS v. 21, t-test and Pearson correlation coefficient.

          Results:

          The mean heat stress indices were significantly higher in working conditions than resting conditions, and there was a significant difference between the physiological parameters of T cr and HR in resting and working conditions (P<0.001). According to the screening criteria of DI, 43.3% of the workers were exposed to the moderate level and 56.7% to the severe level of heat stress. There was a significant difference between the mean WBGT and the Threshold limit values (t= 4.903, P<0.001). Pearson correlation test showed that there was a significant and direct linear relationship between the WBGT and the physiological parameters of T cr and HR (r=0.317, P=0.002; r=0.434, P<0.001, respectively). The DI index had a significant and direct linear relationship with HR; (r=0.229, P=0.03).

          Conclusion:

          The results showed that WBGT is a more appropriate index for evaluating the heat stress of workers in the rolling industry. High heat stress levels at the workstations along with heavy physical activity are health risks for workers in this industry; therefore, interventions must be undertaken to reduce exposure.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Wet-bulb globe temperature (WBGT)--its history and its limitations.

          G Budd (2007)
          Wet-bulb globe temperature (WBGT) is nowadays the most widely used index of heat stress, yet many users appear to be unaware of its history and its limitations. HISTORY OF WBGT: WBGT was invented and first used during the 1950s as one element in a successful campaign to control serious outbreaks of heat illness in training camps of the United States Army and Marine Corps. Control measures based on air temperature and humidity, and applied to all trainees alike, had proved effective but had entailed excessive compliance costs in the form of lost training time. New control measures introduced in 1956 further reduced heat illness and also lost fewer training hours. Crucial innovations were (1) replacing the temperature and humidity measurements with WBGT, which additionally responds to sun and wind, (2) using epidemiologic analyses of casualty records to identify hazardous levels of WBGT and vulnerable trainees, and (3) protecting the most vulnerable trainees by suspending drill at lower levels of WBGT, and by improving their heat tolerance in special conditioning platoons. This campaign has considerable relevance to the prevention of heat illness in sport. LIMITATIONS OF WBGT: WBGT's most serious limitation is that environments at a given level of the index are more stressful when the evaporation of sweat is restricted (by high humidity or low air movement) than when evaporation is free. As with all indices that integrate elements of the thermal environment, interpretation of the observed levels of WBGT requires careful evaluation of people's activity, clothing, and many other factors, all of which can introduce large errors into any predictions of adverse effects. Moreover, the accuracy of WBGT is being eroded by measurement errors associated with the omission of the globe temperature, with non-standard instrumentation, and with unsatisfactory calibration procedures. Because of the above limitations WBGT can provide only a general guide to the likelihood of adverse effects of heat. A much clearer assessment can be obtained by measuring the individual elements of the thermal environment, and using those measurements to estimate the requirement for evaporative cooling, the likelihood of achieving it, and more accurate and comprehensive indices of heat stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thermal comfort and the heat stress indices.

            Thermal stress is an important factor in many industrial situations, athletic events and military scenarios. It can seriously affect the productivity and the health of the individual and diminish tolerance to other environmental hazards. However, the assessment of the thermal stress and the translation of the stress in terms of physiological and psychological strain is complex. For over a century attempts have been made to construct an index, which will describe heat stress satisfactorily. The many indices that have been suggested can be categorized into one of three groups: "rational indices", "empirical indices", or "direct indices". The first 2 groups are sophisticated indices, which integrate environmental and physiological variables; they are difficult to calculate and are not feasible for daily use. The latter group comprises of simple indices, which are based on the measurement of basic environmental variables. In this group 2 indices are in use for over four decades: the "wet-bulb globe temperature" (WBGT) index and the "discomfort index" (DI). The following review summarizes the current knowledge on thermal indices and their correlates to thermal sensation and comfort. With the present knowledge it is suggested to adopt the DI as a universal heat stress index.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heat stress standard ISO 7243 and its global application.

              This paper presents heat stress Standard ISO 7243, which is based upon the wet bulb globe temperature index (WBGT), and considers its suitability for use worldwide. The origins of the WBGT index are considered and how it is used in ISO 7243 and across the world as a simple index for monitoring and assessing hot environments. The standard (and index) has validity, reliability and usability. It is limited in application by consideration of estimating metabolic heat and the effects of clothing. Use of the standard also requires interpretation in terms of how it is used. Management systems, involving risk assessments, that take account of context and culture, are required to ensure successful use of the standard and global applicability. For use outdoors, a WBGT equation that includes solar absorptivity is recommended. A 'clothed WBGT' is proposed to account for the effects of clothing. It is concluded that as a simple assessment method, ISO 7243 has face validity and within limits is applicable worldwide.
                Bookmark

                Author and article information

                Journal
                The Open Public Health Journal
                TOPHJ
                Bentham Science Publishers Ltd.
                1874-9445
                March 28 2019
                March 28 2019
                : 12
                : 1
                : 114-120
                Article
                10.2174/1874944501912010114
                4210a222-ad39-4a29-a9f2-de40e764cde3
                © 2019

                https://creativecommons.org/licenses/by/4.0/legalcode

                History

                Medicine,Chemistry,Life sciences
                Medicine, Chemistry, Life sciences

                Comments

                Comment on this article