28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular excystation and development of Cryptosporidium: tracing the fate of oocysts within Pseudomonas aquatic biofilm systems

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Aquatic biofilms often serve as environmental reservoirs for microorganisms and provide them with a nutrient-rich growth environment under harsh conditions. With regard to Cryptosporidium, biofilms can serve as environmental reservoirs for oocysts, but may also support the growth of additional Cryptosporidium stages.

          Results

          Here we used confocal laser scanning microscopy, scanning electron microscopy (SEM), and flow cytometry to identify and describe various Cryptosporidium developmental stages present within aquatic biofilm systems, and to directly compare these to stages produced in cell culture. We also show that Cryptosporidium has the ability to form a parasitophorous vacuole independently, in a host-free biofilm environment, potentially allowing them to complete an extracellular life cycle. Correlative data from confocal and SEM imaging of the same cells confirmed that the observed developmental stages (including trophozoites, meronts, and merozoites) were Cryptosporidium. These microscopy observations were further supported by flow cytometric analyses, where excysted oocyst populations were detected in 1, 3 and 6 day-old Cryptosporidium-exposed biofilms, but not in biofilm-free controls.

          Conclusions

          These observations not only highlight the risk that aquatic biofilms pose in regards to Cryptosporidium outbreaks from water distribution systems, but further indicate that even simple biofilms are able to stimulate oocyst excystation and support the extracellular multiplication and development of Cryptosporidium within aquatic environments.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12866-014-0281-8) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Biofilms in drinking water and their role as reservoir for pathogens.

          Most microorganisms on Earth live in various aggregates which are generally termed "biofilms". They are ubiquitous and represent the most successful form of life. They are the active agent in biofiltration and the carriers of the self-cleaning potential in soils, sediments and water. They are also common on surfaces in technical systems where they sometimes cause biofouling. In recent years it has become evident that biofilms in drinking water distribution networks can become transient or long-term habitats for hygienically relevant microorganisms. Important categories of these organisms include faecal indicator bacteria (e.g., Escherichia coli), obligate bacterial pathogens of faecal origin (e.g., Campylobacter spp.) opportunistic bacteria of environmental origin (e.g., Legionella spp., Pseudomonas aeruginosa), enteric viruses (e.g., adenoviruses, rotaviruses, noroviruses) and parasitic protozoa (e.g., Cryptosporidium parvum). These organisms can attach to preexisting biofilms, where they become integrated and survive for days to weeks or even longer, depending on the biology and ecology of the organism and the environmental conditions. There are indications that at least a part of the biofilm populations of pathogenic bacteria persists in a viable but non-culturable (VBNC) state and remains unnoticed by the methods appointed to their detection. Thus, biofilms in drinking water systems can serve as an environmental reservoir for pathogenic microorganisms and represent a potential source of water contamination, resulting in a potential health risk for humans if left unnoticed. Copyright © 2011 Elsevier GmbH. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide‐mediated dispersal in single‐ and multi‐species biofilms of clinically and industrially relevant microorganisms

            Summary Strategies to induce biofilm dispersal are of interest due to their potential to prevent biofilm formation and biofilm‐related infections. Nitric oxide (NO), an important messenger molecule in biological systems, was previously identified as a signal for dispersal in biofilms of the model organism Pseudomonas aeruginosa. In the present study, the use of NO as an anti‐biofilm agent more broadly was assessed. Various NO donors, at concentrations estimated to generate NO levels in the picomolar and low nanomolar range, were tested on single‐species biofilms of relevant microorganisms and on multi‐species biofilms from water distribution and treatment systems. Nitric oxide‐induced dispersal was observed in all biofilms assessed, and the average reduction of total biofilm surface was 63%. Moreover, biofilms exposed to low doses of NO were more susceptible to antimicrobial treatments than untreated biofilms. For example, the efficacy of conventional chlorine treatments at removing multi‐species biofilms from water systems was increased by 20‐fold in biofilms treated with NO compared with untreated biofilms. These data suggest that combined treatments with NO may allow for novel and improved strategies to control biofilms and have widespread applications in many environmental, industrial and clinical settings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A comparison of endogenous development of three isolates of Cryptosporidium in suckling mice.

              Suckling mice were used as a model host to compare the endogenous development of three different isolates of Cryptosporidium: one from a naturally infected calf, one from an immunocompetent human with a short-term diarrheal illness, and one from a patient with acquired immune deficiency syndrome (AIDS) and persistent, life-threatening, gastrointestinal cryptosporidiosis. After oral inoculation of mice with oocysts, no differences were noted among developmental stages of the three isolates in their sites of infection, times of appearance, and duration, morphology, and fine structure. Sporozoites excysted within the lumen of the duodenum and ileum, penetrated into the microvillous region of villous enterocytes, and developed into type I meronts with six or eight merozoites. Type I merozoites penetrated enterocytes and underwent cyclic development as type I meronts or they became type II meronts with four merozoites. Type II merozoites did not exhibit cyclic development but developed directly into sexual forms. Microgamonts produced approximately 16 small, bullet-shaped microgametes, which were observed attaching to and penetrating macrogametes. Approximately 80% of the oocysts observed in enterocytes had a thick, two-layered wall. After sporulating within the parasitophorous vacuole, these thick-walled oocysts passed through the gut unaltered and were the resistant forms that transmitted the infection to a new host. Approximately 20% of the oocysts in enterocytes consisted of four sporozoites and a residuum surrounded only by a single oocyst membrane that ruptured soon after the parasite was released from the host cell. The presence of thin-walled, autoinfective oocysts and recycling of type I meronts may explain why a small oral inoculum can produce an overwhelming infection in a suitable host and why immune deficient persons can have persistent, life-threatening cryptosporidiosis in the absence of repeated oral exposure to thick-walled oocysts.
                Bookmark

                Author and article information

                Contributors
                wan.koh@ryerson.ca
                a.thompson@murdoch.edu.au
                Kulana@gmx.de
                Paul.Monis@sawater.com.au
                peta.clode@uwa.edu.au
                Journal
                BMC Microbiol
                BMC Microbiol
                BMC Microbiology
                BioMed Central (London )
                1471-2180
                18 November 2014
                18 November 2014
                2014
                : 14
                : 1
                : 281
                Affiliations
                [ ]School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150 Australia
                [ ]South Australian Water Corporation, 250 Victoria Square, Adelaide, SA 5000 Australia
                [ ]Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 Australia
                [ ]School of Occupational and Public Health, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B2K3 Canada
                Article
                281
                10.1186/s12866-014-0281-8
                4236811
                25403949
                41f6b1e8-5f01-4ee9-990f-cbb698bae47f
                © Koh et al.; licensee BioMed Central Ltd. 2014

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 30 July 2014
                : 30 October 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Microbiology & Virology
                cryptosporidium,biofilms,extracellular multiplication,excystation,confocal microscope,scanning electron microscope,flow cytometry

                Comments

                Comment on this article