61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Due to its cost-effectiveness and rich sugar composition, sugarcane molasses is considered to be a promising carbon source for biorefinery. However, the sugar mixture in sugarcane molasses is not consumed as efficiently as glucose in microbial fermentation due to complex interactions among their utilizing pathways, such as carbon catabolite repression (CCR). In this study, 2,3-butanediol-producing Enterobacter aerogenes was engineered to alleviate CCR and improve sugar utilization by modulating its carbon preference.

          Results

          The gene encoding catabolite repressor/activator (Cra) was deleted in the genome of E. aerogenes to increase the fructose consumption rate. However, the deletion mutation repressed sucrose utilization, resulting in the accumulation of sucrose in the fermentation medium. Cra regulation on expression of the scrAB operon involved in sucrose catabolism was verified by reverse transcription and real-time PCR, and the efficiency of sucrose utilization was restored by disrupting the scrR gene and overexpressing the scrAB operon. In addition, overexpression of the ptsG gene involved in glucose utilization enhanced the glucose preference among mixed sugars, which relieved glucose accumulation in fed-batch fermentation. In fed-batch fermentation using sugarcane molasses, the maximum titer of 2,3-butanediol production by the mutant reached 140.0 g/L at 54 h, which was by far the highest titer of 2,3-butanediol with E. aerogenes achieved through genetic engineering.

          Conclusions

          We have developed genetically engineered E. aerogenes as a 2,3-butanediol producer that efficiently utilizes sugarcane molasses. The fermentation efficiency was dramatically improved by the alleviation of CCR and modulation of carbon preference. These results offer a metabolic engineering approach for achieving highly efficient utilization of mixed sugars for the biorefinery industry.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13068-015-0290-3) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Features of promising technologies for pretreatment of lignocellulosic biomass.

          N. Mosier (2005)
          Cellulosic plant material represents an as-of-yet untapped source of fermentable sugars for significant industrial use. Many physio-chemical structural and compositional factors hinder the enzymatic digestibility of cellulose present in lignocellulosic biomass. The goal of any pretreatment technology is to alter or remove structural and compositional impediments to hydrolysis in order to improve the rate of enzyme hydrolysis and increase yields of fermentable sugars from cellulose or hemicellulose. These methods cause physical and/or chemical changes in the plant biomass in order to achieve this result. Experimental investigation of physical changes and chemical reactions that occur during pretreatment is required for the development of effective and mechanistic models that can be used for the rational design of pretreatment processes. Furthermore, pretreatment processing conditions must be tailored to the specific chemical and structural composition of the various, and variable, sources of lignocellulosic biomass. This paper reviews process parameters and their fundamental modes of action for promising pretreatment methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mechanisms of carbon catabolite repression in bacteria.

            Carbon catabolite repression (CCR) is the paradigm of cellular regulation. CCR happens when bacteria are exposed to two or more carbon sources and one of them is preferentially utilised (frequently glucose). CCR is often mediated by several mechanisms, which can either affect the synthesis of catabolic enzymes via global or specific regulators or inhibit the uptake of a carbon source and thus the formation of the corresponding inducer. The major CCR mechanisms operative in Enterobacteriaceae and Firmicutes are quite different, but in both types of organisms components of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) and protein phosphorylation play a major role. PTS-independent CCR mechanisms are operative in several other bacteria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial 2,3-butanediol production: a state-of-the-art review.

              2,3-butanediol is a promising bulk chemical due to its extensive industry applications. The state-of-the-art nature of microbial 2,3-butanediol production is reviewed in this paper. Various strategies for efficient and economical microbial 2,3-butanediol production, including strain improvement, substrate alternation, and process development, are reviewed and compared with regard to their pros and cons. This review also summarizes value added derivatives of biologically produced 2,3-butanediol and different strategies for downstream processing. The future prospects of microbial 2,3-butanediol production are discussed in light of the current progress, challenges, and trends in this field. Guidelines for future studies are also proposed. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                artsora@korea.ac.kr
                jhm1215@korea.ac.kr
                jinwonlee@sogang.ac.kr
                mkoh@korea.ac.kr
                Journal
                Biotechnol Biofuels
                Biotechnol Biofuels
                Biotechnology for Biofuels
                BioMed Central (London )
                1754-6834
                31 July 2015
                31 July 2015
                2015
                : 8
                : 106
                Affiliations
                [ ]Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
                [ ]Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
                Article
                290
                10.1186/s13068-015-0290-3
                4521459
                26236395
                41e99273-5b92-402b-a58e-120ddc1ef1cb
                © Jung et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 17 February 2015
                : 22 July 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Biotechnology
                2,3-butanediol,enterobacter aerogenes,sugarcane molasses,fed-batch fermentation,catabolite repressor/activator,carbon catabolite repression

                Comments

                Comment on this article