8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current Concepts on the Physiopathological Relevance of Dopaminergic Receptors

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dopamine (DA) is a key neurotransmitter modulating essential functions of the central nervous system (CNS), like voluntary movement, reward, several cognitive functions and goal-oriented behaviors. The factual relevance of DAergic transmission can be well appreciated by considering that its dysfunction is recognized as a core alteration in several devastating neurological and psychiatric disorders, including Parkinson’s disease (PD) and associated movement disorders, as well as, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder (ADHD) and addiction. Here we present an overview of the current knowledge on the involvement of DAergic receptors in the regulation of key physiological brain activities, and the consequences of their dysfunctions in brain disorders such as PD, schizophrenia and addiction.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          Modulation of striatal projection systems by dopamine.

          The basal ganglia are a chain of subcortical nuclei that facilitate action selection. Two striatal projection systems--so-called direct and indirect pathways--form the functional backbone of the basal ganglia circuit. Twenty years ago, investigators proposed that the striatum's ability to use dopamine (DA) rise and fall to control action selection was due to the segregation of D(1) and D(2) DA receptors in direct- and indirect-pathway spiny projection neurons. Although this hypothesis sparked a debate, the evidence that has accumulated since then clearly supports this model. Recent advances in the means of marking neural circuits with optical or molecular reporters have revealed a clear-cut dichotomy between these two cell types at the molecular, anatomical, and physiological levels. The contrast provided by these studies has provided new insights into how the striatum responds to fluctuations in DA signaling and how diseases that alter this signaling change striatal function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Getting formal with dopamine and reward.

            Recent neurophysiological studies reveal that neurons in certain brain structures carry specific signals about past and future rewards. Dopamine neurons display a short-latency, phasic reward signal indicating the difference between actual and predicted rewards. The signal is useful for enhancing neuronal processing and learning behavioral reactions. It is distinctly different from dopamine's tonic enabling of numerous behavioral processes. Neurons in the striatum, frontal cortex, and amygdala also process reward information but provide more differentiated information for identifying and anticipating rewards and organizing goal-directed behavior. The different reward signals have complementary functions, and the optimal use of rewards in voluntary behavior would benefit from interactions between the signals. Addictive psychostimulant drugs may exert their action by amplifying the dopamine reward signal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distinct roles for direct and indirect pathway striatal neurons in reinforcement

              Dopamine signaling is implicated in reinforcement learning, but the neural substrates targeted by dopamine are poorly understood. Here, we bypassed dopamine signaling itself and tested how optogenetic activation of dopamine D1- or D2-receptor-expressing striatal projection neurons influenced reinforcement learning in mice. Stimulating D1-expressing neurons induced persistent reinforcement, whereas stimulating D2-expressing neurons induced transient punishment, demonstrating that activation of these circuits is sufficient to modify the probability of performing future actions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                08 February 2017
                2017
                : 11
                : 27
                Affiliations
                [1] 1Department of Experimental Neuroscience, Santa Lucia Foundation Rome, Italy
                [2] 2Department of Systems Medicine, University of Rome “Tor Vergata” Rome, Italy
                Author notes

                Edited by: Hansen Wang, University of Toronto, Canada

                Reviewed by: John J. Woodward, Medical University of South Carolina, USA; Carl Richard Lupica, National Institute on Drug Abuse (NIH), USA; Ana João Rodrigues, University of Minho, Portugal

                *Correspondence: Nicola B. Mercuri mercurin@ 123456med.uniroma2.it
                Article
                10.3389/fncel.2017.00027
                5296367
                28228718
                41e3ee7e-008e-4a2e-b54e-db990269d8e2
                Copyright © 2017 Ledonne and Mercuri.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 October 2016
                : 30 January 2017
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 141, Pages: 9, Words: 7671
                Categories
                Neuroscience
                Mini Review

                Neurosciences
                dopamine,daergic receptors,nigrostriatal pathway,mesolimbic pathway,mesocortical pathway

                Comments

                Comment on this article