8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      JNK1 negatively controls anti-fungal innate immunity by suppressing CD23 expression

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Opportunistic fungal infections are a leading cause of death for immune-compromised patients and there is pressing need to develop new anti-fungal therapeutic agents because of toxicity and resistance to current anti-fungal drugs. Although C-type lectin receptor- and Toll-like receptor-induced signaling pathways are key activators of host anti-fungal immunity, little is known about the negative regulation of these immune responses. Here, we found that JNK1 activation suppresses anti-fungal immunity in mice. We showed that JNK1-deficient mice had significantly higher survival rate in response to Candida albicans infection, and JNK1 expressed in hematopoietic innate immune cells is critical for this effect. JNK1 deficiency leads to significantly higher induction of CD23, a novel C-type lectin receptor, through NFATc1-mediated regulation of the CD23 promoter. Blocking CD23 upregulation or CD23-dependent nitric oxide production eliminated the enhanced anti-fungal effect in JNK1-deficient mice. Notably, JNK inhibitors exerted potent anti-fungal therapeutic effects in Candida albicans-infected mouse and human cells, indicating that JNK1 can be a therapeutic target for treating fungal infection.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Mitogen-activated protein kinases in innate immunity.

          Following pathogen infection or tissue damage, the stimulation of pattern recognition receptors on the cell surface and in the cytoplasm of innate immune cells activates members of each of the major mitogen-activated protein kinase (MAPK) subfamilies--the extracellular signal-regulated kinase (ERK), p38 and Jun N-terminal kinase (JNK) subfamilies. In conjunction with the activation of nuclear factor-κB and interferon-regulatory factor transcription factors, MAPK activation induces the expression of multiple genes that together regulate the inflammatory response. In this Review, we discuss our current knowledge about the regulation and the function of MAPKs in innate immunity, as well as the importance of negative feedback loops in limiting MAPK activity to prevent host tissue damage. We also examine how pathogens have evolved complex mechanisms to manipulate MAPK activation to increase their virulence. Finally, we consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dectin-1 is required for beta-glucan recognition and control of fungal infection.

            Beta-glucan is one of the most abundant polysaccharides in fungal pathogens, yet its importance in antifungal immunity is unclear. Here we show that deficiency of dectin-1, the myeloid receptor for beta-glucan, rendered mice susceptible to infection with Candida albicans. Dectin-1-deficient leukocytes demonstrated significantly impaired responses to fungi even in the presence of opsonins. Impaired leukocyte responses were manifested in vivo by reduced inflammatory cell recruitment after fungal infection, resulting in substantially increased fungal burdens and enhanced fungal dissemination. Our results establish a fundamental function for beta-glucan recognition by dectin-1 in antifungal immunity and demonstrate a signaling non-Toll-like pattern-recognition receptor required for the induction of protective immune responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MAP kinases in the immune response.

              MAP kinases are among the most ancient signal transduction pathways and are widely used throughout evolution in many physiological processes. In mammalian species, MAP kinases are involved in all aspects of immune responses, from the initiation phase of innate immunity, to activation of adaptive immunity, and to cell death when immune function is complete. In this review, we summarize recent progress in understanding the function and regulation of MAP kinase pathways in these phases of immune responses.
                Bookmark

                Author and article information

                Journal
                9502015
                8791
                Nat Med
                Nat. Med.
                Nature medicine
                1078-8956
                1546-170X
                24 August 2017
                23 January 2017
                March 2017
                11 September 2017
                : 23
                : 3
                : 337-346
                Affiliations
                [1 ]Institute for Immunology, Tsinghua University, School of Medicine, Beijing, 100084, China.
                [2 ]Departments of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
                [3 ]Department of Immunology, Tongji University, School of Medicine, Shanghai, 200092, China.
                Author notes
                [* ]Correspondence should be addressed to X. L. ( linxin307@ 123456tsinghua.edu.cn ) and X. Z. ( zhaoxueqiang@ 123456tsinghua.edu.cn )
                [4]

                These authors contributed equally to this work.

                Article
                NIHMS834842
                10.1038/nm.4260
                5592785
                28112734
                41dd0c0f-ffb3-473e-a04d-ed34ec122ed6

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article