19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-resolution contrast-enhanced vessel wall imaging in patients with suspected cerebral vasculitis: Prospective comparison of whole-brain 3D T1 SPACE versus 2D T1 black blood MRI at 3 Tesla

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Vessel wall imaging (VWI) using T1 dark blood MRI can depict inflammation of intracranial arteries in patients with cerebral vasculitis. Recently, 3D VWI sequences were introduced at 3 Tesla. We aimed to compare 2D and 3D VWI for detection of intracranial vessel wall enhancement (VWE) in patients suspected of cerebral vasculitis.

          Methods

          44 MRI scans of 39 patients were assessed that included bi-planar 2D T1 and whole-brain 3D T1 SPACE dark blood VWI pre and post contrast. Visibility and VWE were analyzed in 31 pre-specified intracranial artery segments. Additionally, leptomeningeal and parenchymal contrast enhancement was assessed.

          Results

          Overall, more arterial segments were visualized with 3D VWI (p<0.0001). Detection of VWE showed fair agreement between 2D and 3D VWI (κ = 0.583). On segmental level, more VWE was detected in intradural ICA by 2D VWI (p<0.001) and in VA V4 segment by 3D VWI (p<0.05). 3D VWI showed more leptomeningeal (p<0.05) and parenchymal (p<0.01) contrast enhancement. In patients with positive diagnosis of cerebral vasculitis, sensitivity was of 67% (2D and 3D VWI) and specificity was 44% (2D VWI) and 48% (3D VWI); more VWE was seen in arteries distal to VA and ICA compared to non-vasculitic patients.

          Conclusion

          2D and 3D VWI differed in the ability to detect VWE. Whole brain coverage with better evaluability of VAs and distal intracranial artery segments, and depiction of more parenchymal and leptomeningeal enhancement make 3D VWI more favorable. As VWE in arteries distal to VA and ICA may be used for discrimination of vasculitic and non-vasculitic patients, future increase in spatial resolution of 3D VWI sequences may be beneficial.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Intracranial Vessel Wall MRI: Principles and Expert Consensus Recommendations of the American Society of Neuroradiology.

          Intracranial vessel wall MR imaging is an adjunct to conventional angiographic imaging with CTA, MRA, or DSA. The technique has multiple potential uses in the context of ischemic stroke and intracranial hemorrhage. There remain gaps in our understanding of intracranial vessel wall MR imaging findings and research is ongoing, but the technique is already used on a clinical basis at many centers. This article, on behalf of the Vessel Wall Imaging Study Group of the American Society of Neuroradiology, provides expert consensus recommendations for current clinical practice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla.

            To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5-mm isotropic-resolution three-dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D-TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4-mm isotropic-resolution to explore the trade-off between SNR and voxel volume. Wall signal-to-noise-ratio (SNR(wall) ), wall-lumen contrast-to-noise-ratio (CNR(wall-lumen) ), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D-VISTA and 2D-TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC). Compared with 2D-TSE measurements, 3D-VISTA provided 58% and 74% improvement in SNR(wall) and CNR(wall-lumen) , respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNR(wall-lumen) using 0.4-mm resolution VISTA decreased by 27%, compared with 0.5-mm VISTA but with reduced partial-volume-based overestimation of wall thickness. Reliability for 3D measurements was good to excellent. The 3D-VISTA provides SNR-efficient, highly reliable measurements of intracranial vessels at high isotropic-resolution, enabling broad coverage in a clinically acceptable time. Copyright © 2011 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI.

              Conventional arterial imaging focuses on the vessel lumen but lacks specificity because different pathologies produce similar luminal defects. Wall imaging can characterize extracranial arterial pathology, but imaging intracranial walls has been limited by resolution and signal constraints. Higher-field scanners may improve visualization of these smaller vessels. Three-tesla contrast-enhanced MRI was used to study the intracranial arteries from a consecutive series of patients at a tertiary stroke center. Multiplanar T2-weighted fast spin echo and multiplanar T1 fluid-attenuated inversion recovery precontrast and postcontrast images were acquired in 37 patients with focal neurologic deficits. Clinical diagnoses included atherosclerotic disease (13), CNS inflammatory disease (3), dissections (3), aneurysms (3), moyamoya syndrome (2), cavernous angioma (1), extracranial source of stroke (5), and no definitive clinical diagnosis (7). Twelve of 13 with atherosclerotic disease had focal, eccentric vessel wall enhancement, 10 of whom had enhancement only in the vessel supplying the area of ischemic injury. Two of 3 with inflammatory diseases had diffuse, concentric vessel wall enhancement. Three of 3 with dissection showed bright signal on T1, and 2 had irregular wall enhancement with a flap and dual lumen. Three-tesla contrast-enhanced MRI can be used to study the wall of intracranial blood vessels. T2 and precontrast and postcontrast T1 fluid-attenuated inversion recovery images at 3 tesla may be able to differentiate enhancement patterns of intracranial atherosclerotic plaques (eccentric), inflammation (concentric), and other wall pathologies. Prospective studies are required to determine the sensitivity and specificity of arterial wall imaging for distinguishing the range of pathologic conditions affecting cerebral vasculature.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: MethodologyRole: Writing – original draftRole: Writing – review & editing
                Role: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: Writing – review & editing
                Role: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: InvestigationRole: ResourcesRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: SupervisionRole: ValidationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                8 March 2019
                2019
                : 14
                : 3
                : e0213514
                Affiliations
                [1 ] Department of Neuroradiology, Faculty of Medicine, Medical Center–University of Freiburg, University of Freiburg, Freiburg, Germany
                [2 ] Department of Nuclear Medicine, Faculty of Medicine, Medical Center–University of Freiburg, University of Freiburg, Freiburg, Germany
                [3 ] Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
                [4 ] Clinical Trials Unit, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
                Vanderbilt University Medical Center, UNITED STATES
                Author notes

                Competing Interests: The senior author of this manuscript (SM) states the following competing interests: Acandis GmbH: consultant and member of the scientific advisory board, received honoraria and travel grants. Medtronic: received speaker honorarium (modest), travel grant, and non-financial support for video case production. Microvention; Stryker: received travel grants. Bracco S.p.A.: received research grant (money paid to institution). Novartis Pharma GmbH: received consultant fee. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

                Author information
                http://orcid.org/0000-0002-8091-1589
                http://orcid.org/0000-0001-6468-4526
                Article
                PONE-D-18-21244
                10.1371/journal.pone.0213514
                6407784
                30849127
                41d4f65e-c921-4f2c-a97d-3b7f316e5f33
                © 2019 Eiden et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 July 2018
                : 24 February 2019
                Page count
                Figures: 3, Tables: 3, Pages: 14
                Funding
                The authors received no specific funding for this work.
                Categories
                Research Article
                Medicine and Health Sciences
                Clinical Medicine
                Clinical Immunology
                Autoimmune Diseases
                Vasculitis
                Biology and Life Sciences
                Immunology
                Clinical Immunology
                Autoimmune Diseases
                Vasculitis
                Medicine and Health Sciences
                Immunology
                Clinical Immunology
                Autoimmune Diseases
                Vasculitis
                Medicine and Health Sciences
                Inflammatory Diseases
                Vasculitis
                Medicine and Health Sciences
                Rheumatology
                Vasculitis
                Medicine and Health Sciences
                Diagnostic Medicine
                Diagnostic Radiology
                Magnetic Resonance Imaging
                Research and Analysis Methods
                Imaging Techniques
                Diagnostic Radiology
                Magnetic Resonance Imaging
                Medicine and Health Sciences
                Radiology and Imaging
                Diagnostic Radiology
                Magnetic Resonance Imaging
                Biology and Life Sciences
                Anatomy
                Cardiovascular Anatomy
                Blood Vessels
                Arteries
                Medicine and Health Sciences
                Anatomy
                Cardiovascular Anatomy
                Blood Vessels
                Arteries
                Biology and Life Sciences
                Anatomy
                Cardiovascular Anatomy
                Blood Vessels
                Arteries
                Cerebral Arteries
                Medicine and Health Sciences
                Anatomy
                Cardiovascular Anatomy
                Blood Vessels
                Arteries
                Cerebral Arteries
                Biology and Life Sciences
                Anatomy
                Nervous System
                Central Nervous System
                Medicine and Health Sciences
                Anatomy
                Nervous System
                Central Nervous System
                Medicine and Health Sciences
                Diagnostic Medicine
                Signs and Symptoms
                Stenosis
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Signs and Symptoms
                Stenosis
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Blood
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Blood
                Biology and Life Sciences
                Physiology
                Body Fluids
                Blood
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Blood
                Research and Analysis Methods
                Imaging Techniques
                Neuroimaging
                Biology and Life Sciences
                Neuroscience
                Neuroimaging
                Custom metadata
                Anonymized raw data sets that include the readers’ rating findings from both 2D and 3D vessel wall imaging sequences of all patients’ MRI have been uploaded to the following public repository: DANS - Data Archiving and Networked Services, on behalf of KNAW (Royal Netherlands Academy of Arts and Sciences). The link to our data in this depository is: https://doi.org/10.17026/dans-25b-q829.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article