41
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before December 31, 2024

      About Blood Purification: 2.2 Impact Factor I 5.8 CiteScore I 0.782 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Ischemic Preconditioning Attenuates Renal Ischemia-Reperfusion Injury by Inhibiting Activation of IKKβ and Inflammatory Response

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Renal ischemia-reperfusion (I/R) injury is a major cause of acute renal failure (ARF). The transcription factor nuclear factor-κB (NF-κB) has been implicated as a key mediator of reperfusion injury. Activation of NF-κB is dependent upon the phosphorylation of its inhibitor, IκB, by the specific inhibitory κB kinase (IKK) subunit, IKKβ. We hypothesized that ischemic preconditioning (IPC) reduces acute renal damage following I/R injury by inhibiting activation of IKKβ. As neutrophil gelatinase-associated lipocalin (NGAL), an early predictive biomarker of acute kidney injury, is regulated by NF-κB, we approached the relationship between NGAL and IKKβ. Method: Thirty male Sprague-Dawley rats were randomly divided into 3 groups after right kidney nephrectomy. Group A rats were sham-operated controls. Group B rats were 45-min ischemic in the left renal artery while Group C rats were pre-treated with 3 cycles of 2-min ischemia and 5-min reperfusion. All the rats were sacrificed at 24 h after reperfusion. We harvested kidneys and serum to do further analysis, including histological and functional parameters, expressions of NGAL and IKKβ in renal tissues. Results: Compared with rats subjected to I/R injury, pre-treated rats had a significant decrease in serum creatinine level (Scr) and tubulointerstitial injury scores (Scr, 86.79 ± 12.98 vs. 205.89 ± 19.16 μmol/l, p < 0.01; tubulointerstitial injury scores, 1.3 ± 0.48 vs. 3.8 ± 0.79, p < 0.01). In addition, expressions of IKKβ (0.95 ± 0.21 vs. 1.74 ± 0.17, p < 0.05) and NGAL (1.71 ± 0.032 vs. 2.66 ± 0.078, p < 0.05) at renal tubule in pre-treated rats were attenuated significantly compared with rats subjected to ischemia-reperfusion injury. Moreover, our study showed that IKKβ and NGAL were in positive correlation (R = 0.965 > R<sub>0.01</sub>(30) = 0.448, p < 0.01). Conclusions: The evidence suggests that IKKβ may play a role in renal I/R injury and give rise to the generation of NGAL. It appears that IPC may attenuate renal injury and the expression of NGAL following acute I/R injury. IKKβ may offer a clinically accessible target for preventing renal injury following I/R.

          Related collections

          Author and article information

          Journal
          AJN
          Am J Nephrol
          10.1159/issn.0250-8095
          American Journal of Nephrology
          S. Karger AG
          0250-8095
          1421-9670
          2009
          September 2009
          16 June 2009
          : 30
          : 3
          : 287-294
          Affiliations
          aDepartment of Nephrology, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, and bDepartment of Chest Surgery, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, China
          Article
          225928 Am J Nephrol 2009;30:287–294
          10.1159/000225928
          19546526
          41c656f3-e886-4305-b95b-67da8dfe81b0
          © 2009 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          History
          : 28 February 2009
          : 18 May 2009
          Page count
          Figures: 7, Tables: 1, References: 36, Pages: 8
          Categories
          Original Report: Laboratory Investigation

          Cardiovascular Medicine,Nephrology
          Ischemia preconditioning,I kappaB kinaseβ (IKKβ),Acute kidney ischemia,Neutrophil gelatinase-associated lipocalin (NGAL)

          Comments

          Comment on this article