6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bitter-Induced Salivary Proteins Increase Detection Threshold of Quinine, But Not Sucrose

      1 , 1 , 1 , 2
      Chemical Senses
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exposures to dietary tannic acid (TA, 3%) and quinine (0.375%) upregulate partially overlapping sets of salivary proteins which are concurrent with changes in taste-driven behaviors, such as rate of feeding and brief access licking to quinine. In addition, the presence of salivary proteins reduces chorda tympani responding to quinine. Together these data suggest that salivary proteins play a role in bitter taste. We hypothesized that salivary proteins altered orosensory feedback to bitter by decreasing sensitivity to the stimulus. To that end, we used diet exposure to alter salivary proteins, then assessed an animal’s ability to detect quinine, using a 2-response operant task. Rats were asked to discriminate descending concentrations of quinine from water in a modified forced-choice paradigm, before and after exposure to diets that alter salivary protein expression in a similar way (0.375% quinine or 3% TA), or 1 of 2 control diets. Control animals received either a bitter diet that does not upregulate salivary proteins (4% sucrose octaacetate), or a nonbitter diet. The rats exposed to salivary protein-inducing diets significantly decreased their performance (had higher detection thresholds) after diet exposure, whereas rats in the control conditions did not alter performance after diet exposure. A fifth group of animals were trained to detect sucrose before and after they were maintained on the 3% TA diet. There was no significant difference in performance, suggesting that these shifts in threshold are stimulus specific rather than task specific. Taken together, these results suggest that salivary proteins reduce sensitivity to quinine.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Tannins and human health: a review.

          Tannins (commonly referred to as tannic acid) are water-soluble polyphenols that are present in many plant foods. They have been reported to be responsible for decreases in feed intake, growth rate, feed efficiency, net metabolizable energy, and protein digestibility in experimental animals. Therefore, foods rich in tannins are considered to be of low nutritional value. However, recent findings indicate that the major effect of tannins was not due to their inhibition on food consumption or digestion but rather the decreased efficiency in converting the absorbed nutrients to new body substances. Incidences of certain cancers, such as esophageal cancer, have been reported to be related to consumption of tannins-rich foods such as betel nuts and herbal teas, suggesting that tannins might be carcinogenic. However, other reports indicated that the carcinogenic activity of tannins might be related to components associated with tannins rather than tannins themselves. Interestingly, many reports indicated negative association between tea consumption and incidences of cancers. Tea polyphenols and many tannin components were suggested to be anticarcinogenic. Many tannin molecules have also been shown to reduce the mutagenic activity of a number of mutagens. Many carcinogens and/or mutagens produce oxygen-free radicals for interaction with cellular macromolecules. The anticarcinogenic and antimutagenic potentials of tannins may be related to their antioxidative property, which is important in protecting cellular oxidative damage, including lipid peroxidation. The generation of superoxide radicals was reported to be inhibited by tannins and related compounds. The antimicrobial activities of tannins are well documented. The growth of many fungi, yeasts, bacteria, and viruses was inhibited by tannins. We have also found that tannic acid and propyl gallate, but not gallic acid, were inhibitory to foodborne bacteria, aquatic bacteria, and off-flavor-producing microorganisms. Their antimicrobial properties seemed to be associated with the hydrolysis of ester linkage between gallic acid and polyols hydrolyzed after ripening of many edible fruits. Tannins in these fruits thus serve as a natural defense mechanism against microbial infections. The antimicrobial property of tannic acid can also be used in food processing to increase the shelf-life of certain foods, such as catfish fillets. Tannins have also been reported to exert other physiological effects, such as to accelerate blood clotting, reduce blood pressure, decrease the serum lipid level, produce liver necrosis, and modulate immunoresponses. The dosage and kind of tannins are critical to these effects. The aim of this review is to summarize and analyze the vast and sometimes conflicting literature on tannins and to provide as accurately as possible the needed information for assessment of the overall effects of tannins on human health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel family of mammalian taste receptors.

            In mammals, taste perception is a major mode of sensory input. We have identified a novel family of 40-80 human and rodent G protein-coupled receptors expressed in subsets of taste receptor cells of the tongue and palate epithelia. These candidate taste receptors (T2Rs) are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. Notably, a single taste receptor cell expresses a large repertoire of T2Rs, suggesting that each cell may be capable of recognizing multiple tastants. T2Rs are exclusively expressed in taste receptor cells that contain the G protein alpha subunit gustducin, implying that they function as gustducin-linked receptors. In the accompanying paper, we demonstrate that T2Rs couple to gustducin in vitro, and respond to bitter tastants in a functional expression assay.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              An overview of binary taste–taste interactions

                Bookmark

                Author and article information

                Journal
                Chemical Senses
                Oxford University Press (OUP)
                0379-864X
                1464-3553
                July 2019
                July 17 2019
                April 25 2019
                July 2019
                July 17 2019
                April 25 2019
                : 44
                : 6
                : 379-388
                Affiliations
                [1 ]Department of Psychology, University at Buffalo, Buffalo, NY, USA
                [2 ]Center for Ingestive Behavior Research, University at Buffalo, Buffalo, NY, USA
                Article
                10.1093/chemse/bjz021
                6635886
                31053859
                41c2c476-1b3b-4410-a947-e8914351a5e6
                © 2019

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article