125
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transgender Women in the Female Category of Sport: Perspectives on Testosterone Suppression and Performance Advantage

      review-article
        1 , 2 , 3 ,
      Sports Medicine (Auckland, N.z.)
      Springer International Publishing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Males enjoy physical performance advantages over females within competitive sport. The sex-based segregation into male and female sporting categories does not account for transgender persons who experience incongruence between their biological sex and their experienced gender identity. Accordingly, the International Olympic Committee (IOC) determined criteria by which a transgender woman may be eligible to compete in the female category, requiring total serum testosterone levels to be suppressed below 10 nmol/L for at least 12 months prior to and during competition. Whether this regulation removes the male performance advantage has not been scrutinized. Here, we review how differences in biological characteristics between biological males and females affect sporting performance and assess whether evidence exists to support the assumption that testosterone suppression in transgender women removes the male performance advantage and thus delivers fair and safe competition. We report that the performance gap between males and females becomes significant at puberty and often amounts to 10–50% depending on sport. The performance gap is more pronounced in sporting activities relying on muscle mass and explosive strength, particularly in the upper body. Longitudinal studies examining the effects of testosterone suppression on muscle mass and strength in transgender women consistently show very modest changes, where the loss of lean body mass, muscle area and strength typically amounts to approximately 5% after 12 months of treatment. Thus, the muscular advantage enjoyed by transgender women is only minimally reduced when testosterone is suppressed. Sports organizations should consider this evidence when reassessing current policies regarding participation of transgender women in the female category of sport.

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s40279-020-01389-3.

          Related collections

          Most cited references119

          • Record: found
          • Abstract: found
          • Article: not found

          Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr.

          We employed a whole body magnetic resonance imaging protocol to examine the influence of age, gender, body weight, and height on skeletal muscle (SM) mass and distribution in a large and heterogeneous sample of 468 men and women. Men had significantly (P < 0.001) more SM in comparison to women in both absolute terms (33.0 vs. 21.0 kg) and relative to body mass (38.4 vs. 30.6%). The gender differences were greater in the upper (40%) than lower (33%) body (P < 0.01). We observed a reduction in relative SM mass starting in the third decade; however, a noticeable decrease in absolute SM mass was not observed until the end of the fifth decade. This decrease was primarily attributed to a decrease in lower body SM. Weight and height explained approximately 50% of the variance in SM mass in men and women. Although a linear relationship existed between SM and height, the relationship between SM and body weight was curvilinear because the contribution of SM to weight gain decreased with increasing body weight. These findings indicate that men have more SM than women and that these gender differences are greater in the upper body. Independent of gender, aging is associated with a decrease in SM mass that is explained, in large measure, by a decrease in lower body SM occurring after the fifth decade.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Importance of Muscular Strength: Training Considerations

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Measurement of skeletal muscle radiation attenuation and basis of its biological variation

              Skeletal muscle contains intramyocellular lipid droplets within the cytoplasm of myocytes as well as intermuscular adipocytes. These depots exhibit physiological and pathological variation which has been revealed with the advent of diagnostic imaging approaches: magnetic resonance (MR) imaging, MR spectroscopy and computed tomography (CT). CT uses computer-processed X-rays and is now being applied in muscle physiology research. The purpose of this review is to present CT methodologies and summarize factors that influence muscle radiation attenuation, a parameter which is inversely related to muscle fat content. Pre-defined radiation attenuation ranges are used to demarcate intermuscular adipose tissue [from −190 to −30 Hounsfield units (HU)] and muscle (−29 HU to +150 HU). Within the latter range, the mean muscle radiation attenuation [muscle (radio) density] is reported. Inconsistent criteria for the upper and lower HU cut-offs used to characterize muscle attenuation limit comparisons between investigations. This area of research would benefit from standardized criteria for reporting muscle attenuation. Available evidence suggests that muscle attenuation is plastic with physiological variation induced by the process of ageing, as well as by aerobic training, which probably reflects accumulation of lipids to fuel aerobic work. Pathological variation in muscle attenuation reflects excess fat deposition in the tissue and is observed in people with obesity, diabetes type II, myositis, osteoarthritis, spinal stenosis and cancer. A poor prognosis and different types of morbidity are predicted by the presence of reduced mean muscle attenuation values in patients with these conditions; however, the biological features of muscle with these characteristics require further investigation.
                Bookmark

                Author and article information

                Contributors
                tommy.lundberg@ki.se
                Journal
                Sports Med
                Sports Med
                Sports Medicine (Auckland, N.z.)
                Springer International Publishing (Cham )
                0112-1642
                1179-2035
                8 December 2020
                8 December 2020
                2021
                : 51
                : 2
                : 199-214
                Affiliations
                [1 ]GRID grid.5379.8, ISNI 0000000121662407, Faculty of Biology, Medicine and Health, , University of Manchester, ; Manchester, UK
                [2 ]GRID grid.4714.6, ISNI 0000 0004 1937 0626, Department of Laboratory Medicine/ANA Futura, Division of Clinical Physiology, , Karolinska Institutet, ; Alfred Nobles Allé 8B, Huddinge, 141 52 Stockholm, Sweden
                [3 ]GRID grid.24381.3c, ISNI 0000 0000 9241 5705, Unit of Clinical Physiology, , Karolinska University Hospital, ; Stockholm, Sweden
                Author information
                http://orcid.org/0000-0002-6818-6230
                Article
                1389
                10.1007/s40279-020-01389-3
                7846503
                33289906
                41ad5498-9e3e-4f5a-b888-6571437bbb31
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                Funding
                Funded by: Karolinska Institute
                Categories
                Review Article
                Custom metadata
                © Springer Nature Switzerland AG 2021

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content8

                Cited by53