Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sodium bicarbonate therapy for acute respiratory acidosis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016.

          To provide an update to "Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012".
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network.

            Traditional approaches to mechanical ventilation use tidal volumes of 10 to 15 ml per kilogram of body weight and may cause stretch-induced lung injury in patients with acute lung injury and the acute respiratory distress syndrome. We therefore conducted a trial to determine whether ventilation with lower tidal volumes would improve the clinical outcomes in these patients. Patients with acute lung injury and the acute respiratory distress syndrome were enrolled in a multicenter, randomized trial. The trial compared traditional ventilation treatment, which involved an initial tidal volume of 12 ml per kilogram of predicted body weight and an airway pressure measured after a 0.5-second pause at the end of inspiration (plateau pressure) of 50 cm of water or less, with ventilation with a lower tidal volume, which involved an initial tidal volume of 6 ml per kilogram of predicted body weight and a plateau pressure of 30 cm of water or less. The primary outcomes were death before a patient was discharged home and was breathing without assistance and the number of days without ventilator use from day 1 to day 28. The trial was stopped after the enrollment of 861 patients because mortality was lower in the group treated with lower tidal volumes than in the group treated with traditional tidal volumes (31.0 percent vs. 39.8 percent, P=0.007), and the number of days without ventilator use during the first 28 days after randomization was greater in this group (mean [+/-SD], 12+/-11 vs. 10+/-11; P=0.007). The mean tidal volumes on days 1 to 3 were 6.2+/-0.8 and 11.8+/-0.8 ml per kilogram of predicted body weight (P<0.001), respectively, and the mean plateau pressures were 25+/-6 and 33+/-8 cm of water (P<0.001), respectively. In patients with acute lung injury and the acute respiratory distress syndrome, mechanical ventilation with a lower tidal volume than is traditionally used results in decreased mortality and increases the number of days without ventilator use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study.

              To evaluate the outcome in patients with severe adult respiratory distress syndrome (ARDS) managed with limitation of peak inspiratory pressure to 30 to 40 cm H2O, low tidal volumes (4 to 7 mL/kg), spontaneous breathing using synchronized intermittent mandatory ventilation from the start of ventilation, and permissive hypercapnia without the use of bicarbonate to buffer acidosis. Also, to compare hospital mortality rate with that predicted by the Acute Physiology and Chronic Health Evaluation (APACHE) II scoring system and the "ventilator score." A ten-bed general intensive care unit in a university hospital. Prospective, descriptive study. Fifty-three patients with severe ARDS having a lung injury score of > or = 2.5. Data recording. The hospital mortality rate was significantly lower than that predicted by the APACHE II scores (26.4% vs. 53.3%, p = .004), even after correcting the latter for the effect of hypercapnic acidosis (26.4% vs. 51.1%, p = .008). The mortality rate increased with increasing number of organ failures, but was only 43% in patients with > or = 4 organ failures, 20.5% with < or = 3 organ failures, and 6.6% with only respiratory failure. The mean maximum PaCO2 was 66.5 torr (range 38 to 158 torr [8.87 kPa, range 5.07 to 21.07]), and the mean arterial pH at the same time was 7.23 (range 6.79 to 7.45). There was no correlation between the maximum PaCO2 or the corresponding pH and the total respiratory rate at the same time. No pneumothoraces developed during mechanical ventilation. These results lend further support to the hypothesis that limitation of peak inspiratory pressure and reduction of regional lung overdistention by the use of low tidal volumes with permissive hypercapnia may reduce ventilator-induced lung injury and improve outcome in severe ARDS. This hypothesis is supported by a large body of experimental evidence, which also suggests that ventilator-induced lung injury may result in the release of inflammatory mediators, and thus may have the potential to augment the development of multiple organ dysfunction. However, the hypothesis requires testing in a randomized trial as acute hypercapnia could potentially have some adverse as well as beneficial effects.
                Bookmark

                Author and article information

                Journal
                Current Opinion in Nephrology & Hypertension
                Ovid Technologies (Wolters Kluwer Health)
                1062-4821
                1473-6543
                2021
                March 2021
                December 31 2020
                : 30
                : 2
                : 223-230
                Article
                10.1097/MNH.0000000000000687
                33395037
                418fb4ea-1ee3-4a28-a601-742f1fd8fc81
                © 2020
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content5,866

                Cited by9

                Most referenced authors1,248