8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanism of action of potato carboxypeptidase inhibitor (PCI) as an EGF blocker.

      Cancer Letters
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The epidermal growth factor receptor (EGFR) signal transduction pathway plays a prominent role in the development of carcinomas, and is an interesting target for antitumoral therapy. We have previously described how potato carboxypeptidase inhibitor (PCI), a 39-amino acid protease inhibitor with a T-Knot motif, binds to EGFR receptor and inhibits the activation of receptor protein tyrosine kinase. In this paper it is shown that PCI interferes with EGFR activation through inhibition of receptor dimerization and receptor transphosphorylation induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha). Moreover, PCI blocks the formation and activation of ErbB1/ErbB-2 heterodimers that have a prominent role in carcinoma development. As a result of these effects, PCI interferes in the EGFR signal transduction pathway by reversing the effects of EGF on the growth of two tumoral cell lines, A431 and MDA-MB-453, and promotes EGFR down-regulation. These results show that PCI acts as an EGF/TGF-alpha antagonist, which suggests its therapeutic potential in the treatment of carcinomas.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Signal transduction by receptors with tyrosine kinase activity.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Control of EGF receptor signaling by clathrin-mediated endocytosis.

            Epidermal growth factor receptor (EGFR) signaling was analyzed in mammalian cells conditionally defective for receptor-mediated endocytosis. EGF-dependent cell proliferation was enhanced in endocytosis-defective cells. However, early EGF-dependent signaling events were not uniformly up-regulated. A subset of signal transducers required the normal endocytic trafficking of EGFR for full activation. Thus, endocytic trafficking of activated EGFR plays a critical role not only in attenuating EGFR signaling but also in establishing and controlling specific signaling pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification.

              Homeostasis of multicellular organisms is critically dependent on the correct interpretation of the plethora of signals which cells are exposed to during their lifespan. Various soluble factors regulate the activation state of cellular receptors which are coupled to a complex signal transduction network that ultimately generates signals defining the required biological response. The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases represents both key regulators of normal cellular development as well as critical players in a variety of pathophysiological phenomena. The aim of this review is to give a broad overview of signal transduction networks that are controlled by the EGFR superfamily of receptors in health and disease and its application for target-selective therapeutic intervention. Since the EGFR and HER2 were recently identified as critical players in the transduction of signals by a variety of cell surface receptors, such as G-protein-coupled receptors and integrins, our special focus is the mechanisms and significance of the interconnectivity between heterologous signalling systems.
                Bookmark

                Author and article information

                Journal
                16039955
                10.1016/j.canlet.2005.01.025

                Comments

                Comment on this article