1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Management of chronic lung diseases in Sudan and Tanzania: how ready are the country health systems?

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Chronic lung diseases (CLDs), responsible for 4 million deaths globally every year, are increasingly important in low- and middle-income countries where most of the global mortality due to CLDs currently occurs. As existing health systems in resource-poor contexts, especially sub-Saharan Africa (SSA), are not generally oriented to provide quality care for chronic diseases, a first step in re-imagining them is to critically consider readiness for service delivery across all aspects of the existing system.

          Methods

          We conducted a mixed-methods assessment of CLD service readiness in 18 purposively selected health facilities in two differing SSA health system contexts, Tanzania and Sudan. We used the World Health Organization’s (WHO) Service Availability and Readiness Assessment checklist, qualitative interviews of key health system stakeholders, health facility registers review and assessed clinicians’ capacity to manage CLD using patient vignettes. CLD service readiness was scored as a composite of availability of service-specific tracer items from the WHO service availability checklist in three domains: staff training and guidelines, diagnostics and equipment, and basic medicines. Qualitative data were analysed using the same domains.

          Results

          One health facility in Tanzania and five in Sudan, attained a CLD readiness score of ≥ 50 % for CLD care. Scores ranged from 14.9 % in a dispensary to 53.3 % in a health center in Tanzania, and from 36.4 to 86.4 % in Sudan. The least available tracer items across both countries were trained human resources and guidelines, and peak flow meters. Only two facilities had COPD guidelines. Patient vignette analysis revealed significant gaps in clinicians’ capacity to manage CLD. Key informants identified low prioritization as key barrier to CLD care.

          Conclusions

          Gaps in service availability and readiness for CLD care in Tanzania and Sudan threaten attainment of universal health coverage in these settings. Detailed assessments by health systems researchers in discussion with stakeholders at all levels of the health system can identify critical blockages to reimagining CLD service provision with people-centered, integrated approaches at its heart.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12913-021-06759-9.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010.

          Reliable and timely information on the leading causes of death in populations, and how these are changing, is a crucial input into health policy debates. In the Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010), we aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex. We attempted to identify all available data on causes of death for 187 countries from 1980 to 2010 from vital registration, verbal autopsy, mortality surveillance, censuses, surveys, hospitals, police records, and mortuaries. We assessed data quality for completeness, diagnostic accuracy, missing data, stochastic variations, and probable causes of death. We applied six different modelling strategies to estimate cause-specific mortality trends depending on the strength of the data. For 133 causes and three special aggregates we used the Cause of Death Ensemble model (CODEm) approach, which uses four families of statistical models testing a large set of different models using different permutations of covariates. Model ensembles were developed from these component models. We assessed model performance with rigorous out-of-sample testing of prediction error and the validity of 95% UIs. For 13 causes with low observed numbers of deaths, we developed negative binomial models with plausible covariates. For 27 causes for which death is rare, we modelled the higher level cause in the cause hierarchy of the GBD 2010 and then allocated deaths across component causes proportionately, estimated from all available data in the database. For selected causes (African trypanosomiasis, congenital syphilis, whooping cough, measles, typhoid and parathyroid, leishmaniasis, acute hepatitis E, and HIV/AIDS), we used natural history models based on information on incidence, prevalence, and case-fatality. We separately estimated cause fractions by aetiology for diarrhoea, lower respiratory infections, and meningitis, as well as disaggregations by subcause for chronic kidney disease, maternal disorders, cirrhosis, and liver cancer. For deaths due to collective violence and natural disasters, we used mortality shock regressions. For every cause, we estimated 95% UIs that captured both parameter estimation uncertainty and uncertainty due to model specification where CODEm was used. We constrained cause-specific fractions within every age-sex group to sum to total mortality based on draws from the uncertainty distributions. In 2010, there were 52·8 million deaths globally. At the most aggregate level, communicable, maternal, neonatal, and nutritional causes were 24·9% of deaths worldwide in 2010, down from 15·9 million (34·1%) of 46·5 million in 1990. This decrease was largely due to decreases in mortality from diarrhoeal disease (from 2·5 to 1·4 million), lower respiratory infections (from 3·4 to 2·8 million), neonatal disorders (from 3·1 to 2·2 million), measles (from 0·63 to 0·13 million), and tetanus (from 0·27 to 0·06 million). Deaths from HIV/AIDS increased from 0·30 million in 1990 to 1·5 million in 2010, reaching a peak of 1·7 million in 2006. Malaria mortality also rose by an estimated 19·9% since 1990 to 1·17 million deaths in 2010. Tuberculosis killed 1·2 million people in 2010. Deaths from non-communicable diseases rose by just under 8 million between 1990 and 2010, accounting for two of every three deaths (34·5 million) worldwide by 2010. 8 million people died from cancer in 2010, 38% more than two decades ago; of these, 1·5 million (19%) were from trachea, bronchus, and lung cancer. Ischaemic heart disease and stroke collectively killed 12·9 million people in 2010, or one in four deaths worldwide, compared with one in five in 1990; 1·3 million deaths were due to diabetes, twice as many as in 1990. The fraction of global deaths due to injuries (5·1 million deaths) was marginally higher in 2010 (9·6%) compared with two decades earlier (8·8%). This was driven by a 46% rise in deaths worldwide due to road traffic accidents (1·3 million in 2010) and a rise in deaths from falls. Ischaemic heart disease, stroke, chronic obstructive pulmonary disease (COPD), lower respiratory infections, lung cancer, and HIV/AIDS were the leading causes of death in 2010. Ischaemic heart disease, lower respiratory infections, stroke, diarrhoeal disease, malaria, and HIV/AIDS were the leading causes of years of life lost due to premature mortality (YLLs) in 2010, similar to what was estimated for 1990, except for HIV/AIDS and preterm birth complications. YLLs from lower respiratory infections and diarrhoea decreased by 45-54% since 1990; ischaemic heart disease and stroke YLLs increased by 17-28%. Regional variations in leading causes of death were substantial. Communicable, maternal, neonatal, and nutritional causes still accounted for 76% of premature mortality in sub-Saharan Africa in 2010. Age standardised death rates from some key disorders rose (HIV/AIDS, Alzheimer's disease, diabetes mellitus, and chronic kidney disease in particular), but for most diseases, death rates fell in the past two decades; including major vascular diseases, COPD, most forms of cancer, liver cirrhosis, and maternal disorders. For other conditions, notably malaria, prostate cancer, and injuries, little change was noted. Population growth, increased average age of the world's population, and largely decreasing age-specific, sex-specific, and cause-specific death rates combine to drive a broad shift from communicable, maternal, neonatal, and nutritional causes towards non-communicable diseases. Nevertheless, communicable, maternal, neonatal, and nutritional causes remain the dominant causes of YLLs in sub-Saharan Africa. Overlaid on this general pattern of the epidemiological transition, marked regional variation exists in many causes, such as interpersonal violence, suicide, liver cancer, diabetes, cirrhosis, Chagas disease, African trypanosomiasis, melanoma, and others. Regional heterogeneity highlights the importance of sound epidemiological assessments of the causes of death on a regular basis. Bill & Melinda Gates Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

            Summary Background Previous attempts to characterise the burden of chronic respiratory diseases have focused only on specific disease conditions, such as chronic obstructive pulmonary disease (COPD) or asthma. In this study, we aimed to characterise the burden of chronic respiratory diseases globally, providing a comprehensive and up-to-date analysis on geographical and time trends from 1990 to 2017. Methods Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, we estimated the prevalence, morbidity, and mortality attributable to chronic respiratory diseases through an analysis of deaths, disability-adjusted life-years (DALYs), and years of life lost (YLL) by GBD super-region, from 1990 to 2017, stratified by age and sex. Specific diseases analysed included asthma, COPD, interstitial lung disease and pulmonary sarcoidosis, pneumoconiosis, and other chronic respiratory diseases. We also assessed the contribution of risk factors (smoking, second-hand smoke, ambient particulate matter and ozone pollution, household air pollution from solid fuels, and occupational risks) to chronic respiratory disease-attributable DALYs. Findings In 2017, 544·9 million people (95% uncertainty interval [UI] 506·9–584·8) worldwide had a chronic respiratory disease, representing an increase of 39·8% compared with 1990. Chronic respiratory disease prevalence showed wide variability across GBD super-regions, with the highest prevalence among both males and females in high-income regions, and the lowest prevalence in sub-Saharan Africa and south Asia. The age-sex-specific prevalence of each chronic respiratory disease in 2017 was also highly variable geographically. Chronic respiratory diseases were the third leading cause of death in 2017 (7·0% [95% UI 6·8–7·2] of all deaths), behind cardiovascular diseases and neoplasms. Deaths due to chronic respiratory diseases numbered 3 914 196 (95% UI 3 790 578–4 044 819) in 2017, an increase of 18·0% since 1990, while total DALYs increased by 13·3%. However, when accounting for ageing and population growth, declines were observed in age-standardised prevalence (14·3% decrease), age-standardised death rates (42·6%), and age-standardised DALY rates (38·2%). In males and females, most chronic respiratory disease-attributable deaths and DALYs were due to COPD. In regional analyses, mortality rates from chronic respiratory diseases were greatest in south Asia and lowest in sub-Saharan Africa, also across both sexes. Notably, although absolute prevalence was lower in south Asia than in most other super-regions, YLLs due to chronic respiratory diseases across the subcontinent were the highest in the world. Death rates due to interstitial lung disease and pulmonary sarcoidosis were greater than those due to pneumoconiosis in all super-regions. Smoking was the leading risk factor for chronic respiratory disease-related disability across all regions for men. Among women, household air pollution from solid fuels was the predominant risk factor for chronic respiratory diseases in south Asia and sub-Saharan Africa, while ambient particulate matter represented the leading risk factor in southeast Asia, east Asia, and Oceania, and in the Middle East and north Africa super-region. Interpretation Our study shows that chronic respiratory diseases remain a leading cause of death and disability worldwide, with growth in absolute numbers but sharp declines in several age-standardised estimators since 1990. Premature mortality from chronic respiratory diseases seems to be highest in regions with less-resourced health systems on a per-capita basis. Funding Bill & Melinda Gates Foundation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary.

              Chronic obstructive pulmonary disease (COPD) is a global health problem, and since 2001, the Global Initiative for Chronic Obstructive Lung Disease (GOLD) has published its strategy document for the diagnosis and management of COPD. This executive summary presents the main contents of the second 5-year revision of the GOLD document that has implemented some of the vast knowledge about COPD accumulated over the last years. Today, GOLD recommends that spirometry is required for the clinical diagnosis of COPD to avoid misdiagnosis and to ensure proper evaluation of severity of airflow limitation. The document highlights that the assessment of the patient with COPD should always include assessment of (1) symptoms, (2) severity of airflow limitation, (3) history of exacerbations, and (4) comorbidities. The first three points can be used to evaluate level of symptoms and risk of future exacerbations, and this is done in a way that splits patients with COPD into four categories-A, B, C, and D. Nonpharmacologic and pharmacologic management of COPD match this assessment in an evidence-based attempt to relieve symptoms and reduce risk of exacerbations. Identification and treatment of comorbidities must have high priority, and a separate section in the document addresses management of comorbidities as well as COPD in the presence of comorbidities. The revised document also contains a new section on exacerbations of COPD. The GOLD initiative will continue to bring COPD to the attention of all relevant shareholders and will hopefully inspire future national and local guidelines on the management of COPD.
                Bookmark

                Author and article information

                Contributors
                Uzochukwu.Egere@lstmed.ac.uk
                Journal
                BMC Health Serv Res
                BMC Health Serv Res
                BMC Health Services Research
                BioMed Central (London )
                1472-6963
                24 July 2021
                24 July 2021
                2021
                : 21
                : 734
                Affiliations
                [1 ]GRID grid.48004.38, ISNI 0000 0004 1936 9764, Department of International Public Health, , Liverpool School of Tropical Medicine, ; Liverpool, L3 5QA UK
                [2 ]GRID grid.416716.3, ISNI 0000 0004 0367 5636, National Institute for Medical Research, ; Dar es Salaam, Tanzania
                [3 ]NIMR-Mbeya Medical Research Center, Mbeya, Tanzania
                [4 ]The Epidemiological Laboratory, Khartoum, Sudan
                [5 ]Kibong’oto Infectious Diseases Hospital, Mae Street, Kilimanjaro, Tanzania
                [6 ]GRID grid.48004.38, ISNI 0000 0004 1936 9764, Department of Clinical Sciences, , Liverpool School of Tropical Medicine, ; Liverpool, UK
                [7 ]GRID grid.415970.e, ISNI 0000 0004 0417 2395, Tropical Infectious Diseases Unit, , Royal Liverpool University Hospital, ; Prescot Street, Liverpool, UK
                Article
                6759
                10.1186/s12913-021-06759-9
                8310588
                34303370
                4155d5c8-50e9-4d7e-af92-97afce73aee0
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 23 February 2021
                : 12 July 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100014338, National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care Yorkshire and Humber;
                Award ID: 16/136/35
                Award ID: 16/136/35
                Award ID: 16/136/35
                Award ID: 16/136/35
                Award ID: 16/136/35
                Award ID: 16/136/35
                Award ID: 16/136/35
                Award ID: 16/136/35
                Award ID: 16/136/35
                Award ID: 16/136/35
                Award ID: 16/136/35
                Award ID: 16/136/35
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Health & Social care
                Health & Social care

                Comments

                Comment on this article