10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accuracy of controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) for assessing steatosis and fibrosis in non-alcoholic fatty liver disease: A systematic review and meta-analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background

          Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease, and among the non-invasive tests, controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) have shown better diagnostic performance in NAFLD. This meta-analysis aimed to evaluate the performance of CAP and LSM for assessing steatosis and fibrosis in NAFLD.

          Methods

          We searched the PubMed, Web of Science, Cochrane Library, and Embase databases for relevant articles published up to February 13 th, 2022, and selected studies that met the inclusion and exclusion criteria, and evaluated the quality of evidence. Then we pooled sensitivity (SE), specificity (SP), and area under receiver operating characteristic (AUROC) curves. A random effect model was applied regardless of heterogeneity. Meta-regression analysis and subgroup analysis were performed to explore heterogeneity, and Fagan plot analysis was used to evaluate clinical utility. This meta-analysis was completed in Nanjing, Jiangsu and registered on PROSPERO (CRD42022309965).

          Findings

          A total of 10537 patients from 61 studies were included in our meta-analysis. The AUROC of CAP were 0·924, 0·794 and 0·778 for steatosis grades ≥ S1, ≥ S2 and = S3, respectively, and the AUROC of LSM for detecting fibrosis stages ≥ F1, ≥ F2, ≥ F3, and = F4 were 0·851, 0·830, 0·897 and 0·925, respectively. Subgroup analysis revealed that BMI ≥ 30 kg/m² had lower accuracy for diagnosing S ≥ S1, ≥ S2 than BMI<30 kg/m². For the mean cut-off values, significant differences were found in CAP values among different body mass index (BMI) populations and LSM values among different regions. For diagnosing S ≥ S1, ≥ S2 and = S3, the mean CAP cut-off values for BMI ≥ 30 kg/m² were 30·7, 28·2, and 27·9 dB/m higher than for BMI < 30 kg/m² ( P = 0·001, 0·001 and 0·018, respectively). For diagnosing F ≥ F2 and = F4, the mean cut-off values of Europe and America were 0·96 and 2·03 kPa higher than Asia ( P = 0·027, P = 0·034), respectively. In addition, the results did not change significantly after sensitivity analysis and the trim and fill method to correct for publication bias, proving that the conclusions are robust.

          Interpretation

          The good performance of CAP and LSM for the diagnosis of mild steatosis (S ≥ S1), advanced liver fibrosis (F ≥ F3), and cirrhosis (F = F4) can be used to screen for NAFLD in high-risk populations. Of note, the accuracy of CAP for the detection of steatosis in patients with obesity is reduced and requires specific diagnostic values. For LSM, the same diagnostic values can be used when the appropriate probes are selected based on BMI and the automated probe selection tool. The performance of CAP and LSM in assessing steatosis in patients with obesity, moderate to severe steatosis, and low-grade fibrosis should be further validated and improved in the future.

          Funding

          The study was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes.

          Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide. We estimated the global prevalence, incidence, progression, and outcomes of NAFLD and nonalcoholic steatohepatitis (NASH). PubMed/MEDLINE were searched from 1989 to 2015 for terms involving epidemiology and progression of NAFLD. Exclusions included selected groups (studies that exclusively enrolled morbidly obese or diabetics or pediatric) and no data on alcohol consumption or other liver diseases. Incidence of hepatocellular carcinoma (HCC), cirrhosis, overall mortality, and liver-related mortality were determined. NASH required histological diagnosis. All studies were reviewed by three independent investigators. Analysis was stratified by region, diagnostic technique, biopsy indication, and study population. We used random-effects models to provide point estimates (95% confidence interval [CI]) of prevalence, incidence, mortality and incidence rate ratios, and metaregression with subgroup analysis to account for heterogeneity. Of 729 studies, 86 were included with a sample size of 8,515,431 from 22 countries. Global prevalence of NAFLD is 25.24% (95% CI: 22.10-28.65) with highest prevalence in the Middle East and South America and lowest in Africa. Metabolic comorbidities associated with NAFLD included obesity (51.34%; 95% CI: 41.38-61.20), type 2 diabetes (22.51%; 95% CI: 17.92-27.89), hyperlipidemia (69.16%; 95% CI: 49.91-83.46%), hypertension (39.34%; 95% CI: 33.15-45.88), and metabolic syndrome (42.54%; 95% CI: 30.06-56.05). Fibrosis progression proportion, and mean annual rate of progression in NASH were 40.76% (95% CI: 34.69-47.13) and 0.09 (95% CI: 0.06-0.12). HCC incidence among NAFLD patients was 0.44 per 1,000 person-years (range, 0.29-0.66). Liver-specific mortality and overall mortality among NAFLD and NASH were 0.77 per 1,000 (range, 0.33-1.77) and 11.77 per 1,000 person-years (range, 7.10-19.53) and 15.44 per 1,000 (range, 11.72-20.34) and 25.56 per 1,000 person-years (range, 6.29-103.80). Incidence risk ratios for liver-specific and overall mortality for NAFLD were 1.94 (range, 1.28-2.92) and 1.05 (range, 0.70-1.56).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.

            In 2003, the QUADAS tool for systematic reviews of diagnostic accuracy studies was developed. Experience, anecdotal reports, and feedback suggested areas for improvement; therefore, QUADAS-2 was developed. This tool comprises 4 domains: patient selection, index test, reference standard, and flow and timing. Each domain is assessed in terms of risk of bias, and the first 3 domains are also assessed in terms of concerns regarding applicability. Signalling questions are included to help judge risk of bias. The QUADAS-2 tool is applied in 4 phases: summarize the review question, tailor the tool and produce review-specific guidance, construct a flow diagram for the primary study, and judge bias and applicability. This tool will allow for more transparent rating of bias and applicability of primary diagnostic accuracy studies.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases.

                Bookmark

                Author and article information

                Contributors
                Journal
                eClinicalMedicine
                EClinicalMedicine
                eClinicalMedicine
                Elsevier
                2589-5370
                10 July 2022
                September 2022
                10 July 2022
                : 51
                : 101547
                Affiliations
                [a ]The first clinical medical college of Nanjing University of Chinese Medicine, Nanjing, China
                [b ]Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
                [c ]Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
                Author notes
                [* ]Corresponding author at: Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China. Zhouxiqiao@ 123456njmu.edu.cn
                Article
                S2589-5370(22)00277-2 101547
                10.1016/j.eclinm.2022.101547
                9284399
                35844772
                4154463a-0c95-474f-9bf0-c53685c367b9
                © 2022 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 15 April 2022
                : 16 June 2022
                : 20 June 2022
                Categories
                Articles

                controlled attenuation parameter (cap),liver stiffness measurement (lsm),diagnostic accuracy,non-alcoholic fatty liver disease (nafld),non-alcoholic steatohepatitis (nash),meta-analysis

                Comments

                Comment on this article

                scite_

                Similar content106

                Cited by26

                Most referenced authors1,802