1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oridonin impedes breast cancer growth by blocking cells in S phase and inhibiting the PI3K/AKT/mTOR signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast cancer is one of the most common cancers. Oridonin, a traditional Chinese medicine, is believed to inhibit tumor growth, but its particular effects on breast cancer remain unknown. In this study, we examined oridonin's effects on 4T1, MCF-7, and MDAMB-231 cellular activity using CCK8. Scratch assays were used to detect oridonin's effects on cellular migration. Oridonin's effects on the breast cancer cell cycle were studied using flow cytometry, and expression of cell cycle related proteins p53, CDK2, and p21 was detected using Western blot assays. Metabolomics assays were used to detect changes in small molecule metabolites and metabolic pathways in breast cancer cells after treatment with oridonin. Oridonin's effects on breast cancer growth were also studied using xenograft mice. Metabolomics assays were used to detect changes in metabolites and metabolic pathways in xenograft mouse plasma in a control group, model group, and drug administration group. Experimental results showed that oridonin could significantly inhibit breast cancer growth both in vivo and in vitro. Scratch experiments showed that oridonin could inhibit breast cancer cell migration. Oridonin was also able to arrest cells in S phase by affecting several cell cycle-related proteins, including p53, CDK2, and p21. Metabolomic analysis of 4T1 cells identified a total of 33 differential metabolites, including multiple amino acids (such as l-Glutamic acid, l-Asparagine, l-Histidine, l-Valine, and l-Isoleucine). KEGG pathway enrichment analysis showed significant changes in aminoacyl-tRNA biosynthesis, and in multiple amino acid metabolic pathways. Plasma metabolomic analyses of xenograft mice revealed 28 differentially-expressed metabolites between the different animal model groups, including multiple amino acids. KEGG pathway analysis showed significant alterations in multiple amino acid metabolic pathways in oridonin-treated mice. Additionally, changes in the expression of PI3K, AKT and mTOR proteins, as well as in branched amino acids, suggest that oridonin affects the PI3K/AKT/mTOR signaling pathway by inhibiting the biosynthesis of valine, leucine and isoleucine. Taken together, our results suggest that oridonin has strong anti-tumor activity in vitro and in vivo, and has potential as an adjuvant to breast cancer treatment regimens.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          The Emerging Hallmarks of Cancer Metabolism.

          Tumorigenesis is dependent on the reprogramming of cellular metabolism as both direct and indirect consequence of oncogenic mutations. A common feature of cancer cell metabolism is the ability to acquire necessary nutrients from a frequently nutrient-poor environment and utilize these nutrients to both maintain viability and build new biomass. The alterations in intracellular and extracellular metabolites that can accompany cancer-associated metabolic reprogramming have profound effects on gene expression, cellular differentiation, and the tumor microenvironment. In this Perspective, we have organized known cancer-associated metabolic changes into six hallmarks: (1) deregulated uptake of glucose and amino acids, (2) use of opportunistic modes of nutrient acquisition, (3) use of glycolysis/TCA cycle intermediates for biosynthesis and NADPH production, (4) increased demand for nitrogen, (5) alterations in metabolite-driven gene regulation, and (6) metabolic interactions with the microenvironment. While few tumors display all six hallmarks, most display several. The specific hallmarks exhibited by an individual tumor may ultimately contribute to better tumor classification and aid in directing treatment.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            mTOR signalling and cellular metabolism are mutual determinants in cancer

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elevated circulating branched chain amino acids are an early event in pancreatic adenocarcinoma development

              Most patients with pancreatic ductal adenocarcinoma (PDAC) are diagnosed with advanced disease and survive less than 12 months 1 . PDAC has been linked with obesity and glucose intolerance 2-4 , but whether changes in circulating metabolites are associated with early cancer progression is unknown. To better understand metabolic derangements associated with early disease, we profiled metabolites in prediagnostic plasma from pancreatic cancer cases and matched controls from four prospective cohort studies. We find that elevated plasma levels of branched chain amino acids (BCAAs) are associated with a greater than 2–fold increased risk of future pancreatic cancer diagnosis. This elevated risk was independent of known predisposing factors, with the strongest association observed among subjects with samples collected 2 to 5 years prior to diagnosis when occult disease is likely present. We show that plasma BCAAs are also elevated in mice with early stage pancreatic cancers driven by mutant Kras expression, and that breakdown of tissue protein accounts for the increase in plasma BCAAs that accompanies early stage disease. Together, these findings suggest that increased whole–body protein breakdown is an early event in development of PDAC.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                11 July 2023
                July 2023
                11 July 2023
                : 9
                : 7
                : e18046
                Affiliations
                [a ]Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
                [b ]Department of Blood Transfusion, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
                [c ]Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
                [d ]Department of Pediatrics, The Fifth Affiliated Hospital, Zhengzhou University, 3 Kangfuqian Street, Zhengzhou, Henan 450052, China
                [e ]Henan Key Laboratory of Rehabilitation Medicine, The Fifth Affiliated Hospital, Zhengzhou University, 3 Kangfuqian Street, Zhengzhou, Henan 450052, China
                [f ]Henan Joint International Research Laboratory of Chronic Liver Injury, The Fifth Affiliated Hospital, Zhengzhou University, 3 Kangfuqian Street, Zhengzhou, Henan 450052, China
                [g ]Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, The Fifth Affiliated Hospital, Zhengzhou University, 3 Kangfuqian Street, Zhengzhou, Henan 450052, China
                [h ]Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, The Fifth Affiliated Hospital, Zhengzhou University, 3 Kangfuqian Street, Zhengzhou, Henan 450052, China
                Author notes
                []Corresponding author. Department of Pediatrics, the Fifth Affiliated Hospital, Zhengzhou University, 3 Kangfuqian Street, Zhengzhou, Henan 450052, China. tangyoucai@ 123456hotmail.com
                [∗∗ ]Corresponding author. xuxia@ 123456zzu.edu.cn
                Article
                S2405-8440(23)05254-4 e18046
                10.1016/j.heliyon.2023.e18046
                10372243
                37519735
                4104c7b0-62aa-4647-9bb9-b099d59ce471
                © 2023 The Authors. Published by Elsevier Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 25 April 2023
                : 3 July 2023
                : 5 July 2023
                Categories
                Research Article

                oridonin,breast cancer,metabolomics,amino acid metabolism,pi3k/akt/mtor signaling pathway

                Comments

                Comment on this article